
module speccannonical

extends Naturals, Sequences, FiniteSets

Redeclaration of specdatamodels variables

variable events

constant USERS

constants
SubscriptionFee,
CancellationFee,
FailedPaymentFee

Logic to Test Replace stubs below with implementation. Because there is no forward declaration,
we invert what we’d ideally like to do, which is to import the requirements into each implemen-
tation. Our logic testing relies on determining if a given state is enabled or not.

variable database, month
instance stubs

Spec
∆
= Init ∧2[Next]vars

Trace requirements to specification

Not Traceable Functional: 1,2,3,6,7,9,14 NonFunctional : 1,2,3

Definitions

InTrial(u, end)
∆
=

∃ i ∈ 1 . . end :
∧ events[i] ∈ StartTrialEvent Has started trial

∧ events[i].user = u

6. Start Trial endpoint request

6.3 If the requesting User has never been Subscribed or In Trial, that User SHALL be In

Trial

∧ ¬∃ j ∈ i . . end : And not canceled

∧ events[j] ∈
8 Cancel Trial endpoint request

8.2 [Partial] If the requesting User is In Trial, the User SHALL be Not Subscribed

CancelTrialEvent ∪
2. Start Subscription endpoint request

2.2 If the requesting User is In Trial, the trial SHALL end and the requesting

User SHALL be Subscribed

StartSubscriptionEvent
∧ events[j].user = u

1

11 [Partial] When a User is In Trial at the end of the month that the trial was started,

they SHALL be Subscribed

∧ ¬∃ j ∈ i . . end :
∧ events[j] ∈ MonthPassEvent

UnsubscribedAfterEvent(u, i , end)
∆
=

∃ j ∈ i . . end : And not unsubscribed after

∧ events[j] /∈ MonthPassEvent
∧ events[j].user = u

Cancel Subscription endpoint request 4.2.1 User SHALL be Not Subscribed at the end of

the

current month

∧ ∨ ∧ events[j] ∈ CancelSubscriptionEvent
∧ ∃ k ∈ j . . end : events[k] ∈ MonthPassEvent

16. User has payment failed

16.1 mark the User as Not Subscribed

∨ events[j] ∈ PaymentFailedEvent

SubscribedFromStartSubscription(u, end)
∆
=

2.4 If the requesting User is scheduled to be Not Subscribed due to cancellation, the requesting

User SHALL remain Subscribed

Implemented because a StartSubscriptionEvent after Cancel undoes the cancel.

∃ i ∈ 1 . . end :
∧ events[i] ∈ StartSubscriptionEvent Has subscribed

∧ events[i].user = u
∧ ¬UnsubscribedAfterEvent(u, i , end)

AboutToCancel(u, end)
∆
=

∃ i ∈ 1 . . end :
∧ events[i] ∈ CancelSubscriptionEvent
∧ ¬∃ j ∈ i . . end :

events[j] ∈ MonthPassEvent ∪
StartSubscriptionEvent

SubscribedFromTrial(u, end)
∆
=

11 [Partial] When a User is In Trial at the end of the month that the trial was started, they

SHALL be Subscribed

∃ i ∈ 1 . . end :
∧ events[i] ∈ StartTrialEvent Has started trial

∧ events[i].user = u
∧ ¬InTrial(u, end) Requirement fulfilled through InTrial

∧ ¬UnsubscribedAfterEvent(u, i , end)

2

Cancel Trial endpoint request 8.2 [Partial] If the requesting User is In Trial, the

User SHALL be Not Subscribed

∧ ¬∃ j ∈ i . . end : And not canceled

∧ events[j] ∈ CancelTrialEvent
∧ events[j].user = u

Subscribed(u, end)
∆
=

∨ SubscribedFromStartSubscription(u, end)
∨ SubscribedFromTrial(u, end)

Invariants

2 When a request is received by the Start Subscription endpoint

StartSubscriptionAccessControl
∆
=

∀ u ∈ USERS :
let authorized

∆
= ¬Subscribed(u, Now) ∨AboutToCancel(u, Now)in

2.1: If the requesting User is Subscribed , the request SHALL return with 409 Conflict

∨ ∧ ¬authorized
∧ ¬enabled StartSubscription(u)

2.2 [Partial]: If the requesting User is In Trial, the trial SHALL end and the requesting

User SHALL be Subscribed

2.3: If the requesting User is Not Subscribed , the requesting User SHALL be Subscribed

∨ ∧ authorized
∧ enabled StartSubscription(u)

4 When a request is received by the Cancel Subscription endpoint

CancelSubscriptionAccessControl
∆
=

∀ u ∈ USERS :
let authorized

∆
= Subscribed(u, Now) ∧ ¬AboutToCancel(u, Now)in

4.1 If the requesting User is not Subscribed , the request SHALL return with 409 Conflict

∨ ∧ ¬authorized
∧ ¬enabled CancelSubscription(u)

4.2 [Partial]: If the requesting User is Subscribed , the User SHALL . . . [Cancellation

Requirements]

∨ ∧ authorized
∧ enabled CancelSubscription(u)

6.3 [Partial] If the requesting User is has never been Subscribed , or is In Trial

3

EligibleForTrial(u)
∆
=

¬∃ i ∈ 1 . . Len(events) :
∧ events[i] ∈

StartSubscriptionEvent ∪
StartTrialEvent

∧ events[i].user = u

6 When a request is received by the Start Trial endpoint

StartTrialAccessControl
∆
=

∀ u ∈ USERS :
6.1 If the requesting User is Subscribed or In Trial, the request SHALL return with 409

Conflict

6.2 If the requesting User has previously been Subscribed or In Trial, the request SHALL

return with 409 Conflict

∨ ∧ ¬EligibleForTrial(u)
∧ ¬enabled StartTrial(u)

6.3 If the requesting User has never been Subscribed or In Trial, that User SHALL be In

Trial

∨ ∧ EligibleForTrial(u)
∧ enabled StartTrial(u)

8 When a request is received by the Cancel Trial endpoint

CancelTrialAccessControl
∆
=

∀ u ∈ USERS :

8.1 If the requesting User is not In Trial, the request SHALL return with 409 Conflict

∨ ∧ ¬InTrial(u, Now)
∧ ¬enabled CancelTrial(u)

8.2 [Partial] If the requesting User is In Trial, the User SHALL be Not Subscribed

∨ ∧ InTrial(u, Now)
∧ enabled CancelTrial(u)

10 When a request is received by the Watch Video endpoint

WatchVideoAccessControl
∆
=

∀ u ∈ USERS :
10.1 If the requesting User is not In Trial or Subscribed , the request SHALL return with

409 Conflict

∨ ∧ ¬InTrial(u, Now) ∧ ¬Subscribed(u, Now)
∧ ¬enabled WatchVideo(u)

10.2 If the requesting User is In Trial or Subscribed , the system SHALL allow the User to

Watch Video

∨ ∧ InTrial(u, Now) ∨ Subscribed(u, Now)
∧ enabled WatchVideo(u)

4

Runs a given operation between: 1− first month for the first month, and month i −month i + 1

TrueForEveryUserMonth(op(, ,), checkFirstMonth)
∆
=

let numMonthPass
∆
= Cardinality({i ∈ 1 . . Len(events) : events[i]

∈ MonthPassEvent})
in
If checking the first month

∧ ∨ ¬checkFirstMonth
∨ ∧ checkFirstMonth
There does not exist

∧ ¬∃ i ∈ 1 . . Len(events) :
a first month

∧ events[i] ∈ MonthPassEvent
∧ ¬∃ j ∈ 1 . . i : events[j] ∈ MonthPassEvent
Where the op is false for any user

∧ ∃ u ∈ USERS :
¬op(u, 1, i)

There does not exist a pair of consecutive months

∧ ¬∃ i ∈ 1 . . Len(events) :
∧ events[i] ∈ MonthPassEvent
∧ ∃ j ∈ i + 1 . . Len(events) :

∧ events[j] ∈ MonthPassEvent
∧ ¬∃ k ∈ (i + 2) . . (j − 1) :

events[k] ∈ MonthPassEvent
where op is not true for all users

∧ ∃ u ∈ USERS :
¬op(u, i , j)

15 When a User is Billed the system SHALL call the Bill endpoint of the Payment Processor.

This requirement is satisfied by how requirements 4.2.2, 12 and 13 are tested. They test that

appropriate Bill message was dispatched

12 When a User becomes Subscribed

12.1 they shall be Billed the Subscription Fee before the end of the month

SubscribedThisMonth(u, start , end)
∆
=

∧ ¬Subscribed(u, start)
∧ Subscribed(u, end − 1)

UserSubscribedThisMonthBilledSubscriptionFee(u, start , end)
∆
=

let shouldBill
∆
= SubscribedThisMonth(u, start , end)in

Only applies if subscribed this month

∨ ¬shouldBill
∨ ∧ shouldBill

∧ ∃ i ∈ start . . end :

5

∧ events[i] ∈ BillEvent
∧ events[i].user = u
∧ events[i].fee = SubscriptionFee

SubscribedNewUsersBilledSubscriptionFee
∆
=

TrueForEveryUserMonth(UserSubscribedThisMonthBilledSubscriptionFee, true)

13 When a User is Subscribed at the start of a month, they shall be Billed the Subscription Fee

SubscribedUserBilledThisMonth(u, start , end)
∆
=

let subscribed
∆
= Subscribed(u, start)in

Only applies if subscribed at start of month

∨ ¬subscribed
∨ ∧ subscribed

∧ ∨ ∃ i ∈ start . . end :
∧ events[i] ∈ BillEvent
∧ events[i].user = u
∧ events[i].fee = SubscriptionFee

If the user failed a payment this is a separate workflow

∨ ∃ i ∈ start . . end :
∧ events[i] ∈ PaymentFailedEvent
∧ events[i].user = u

SubscribedUsersBilledStartOfMonth
∆
=

TrueForEveryUserMonth(SubscribedUserBilledThisMonth, false)

12.2 If the requesting User has Post Due Payments they SHALL be Billed in that amount before

the end of the month, and Post Due Payments shall be zeroed

16 When a callback is received to the Payment Failed endpoint for a User, the system SHALL

16.2 set Post Due Payment for the User to:

(failed payment amount) + CancellationFee

PotentialStartingEvent(u, event)
∆
=

∧ event ∈ StartSubscriptionEvent ∪
StartTrialEvent

∧ event .user = u

IsPaymentFailedEvent(u, event)
∆
=

∧ event ∈ PaymentFailedEvent
∧ event .user = u

UserBilledForFailureBetweenRange(u, start , end , fee)
∆
=

∃ i ∈ start . . end :
∧ events[i] ∈ BillEvent
∧ events[i].user = u
∧ events[i].fee = FailedPaymentFee

6

UserBilledForPostDuePaymentsIfSubscribed(u, start , end)
∆
=

let starts
∆
= {i ∈ 1 . . start : PotentialStartingEvent(u, events[i])}in

let paymentFailed
∆
= {i ∈ 1 . . start : IsPaymentFailedEvent(u, events[i])}in

∀ p ∈ paymentFailed :

let resubscribedAfterFailedPayment
∆
=

∃ i ∈ p . . end :
∧ i ∈ starts

in

∨ ¬resubscribedAfterFailedPayment
∨ ∧ resubscribedAfterFailedPayment

There doesn’t exist a failed payment

∧ ¬∃ i ∈ p . . end :
That has a subscription directly after it

∧ i ∈ starts
∧ ¬∃ j ∈ p . . i :

j ∈ starts
Where the user was not billed for the failed payment

∧ ¬UserBilledForFailureBetweenRange(u, i , end , events[p].fee)

SubscribedUsersBilledPostDuePayements
∆
=

TrueForEveryUserMonth(UserBilledForPostDuePaymentsIfSubscribed , true)

4 Cancel Subscription endpoint

4.2.2 if the user is Not Subscribed at the end of the current month, they SHALL be Billed a

Cancellation Fee

UserCancelledLastMonth(u, start , end)
∆
=

start − 1 because it doesn’t count cancellations that take effect

at start

∧ Subscribed(u, start − 1)
∧ ¬Subscribed(u, start)

UserCancelledLastMonthBilled(u, start , end)
∆
=

Only applies if user cancelled this month

∨ ¬UserCancelledLastMonth(u, start , end)
∨ ∧UserCancelledLastMonth(u, start , end)

∧ ∨ ∃ i ∈ start . . end :
∧ events[i] ∈ BillEvent
∧ events[i].user = u
∧ events[i].fee = CancellationFee

If the user failed a payment this is a separate workflow

∨ ∃ i ∈ start . . end :
∧ events[i] ∈ PaymentFailedEvent
∧ events[i].user = u

7

CancelingUsersBilledCancelationFees
∆
=

TrueForEveryUserMonth(UserCancelledLastMonthBilled , false)

State Constraints

EventLengthLimit
∆
=

Len(events) < 10

MonthLimit
∆
=

let monthPassEvents
∆
= SelectSeq(events, lambda x : x .type = “monthpass”)

in
Len(monthPassEvents) < 5

StateLimit
∆
=

∧ EventLengthLimit
∧MonthLimit

\ * Modification History

\ * Last modified Sun Jun 19 17:43:11 MST 2022 by elliotswart

\ * Created Thu Jun 16 19:34:18 MST 2022 by elliotswart

8

