
module juniorv2

Redeclaration of specdatamodels variables

extends Sequences, Naturals, FiniteSets

Represents every potential user in the system

constant USERS

Constants that should be set to single model values, to allow comparisons

Only equality comparisons will be made.

constants
SubscriptionFee,
CancellationFee,
FailedPaymentFee

variables
Represents the current month

month,
Represents the status of the database. Design requirements require

that all persistant application state be stored here

database,
Required by spec

events

vars
∆
= ⟨events, month, database⟩

Provides all the data models required by the spec

instance specdatamodels

Now
∆
= Len(events)

Months
∆
= 0 . . 10

Strong Typing

Month
∆
= Nat

Database Rows

UserRow
∆
= [

subscribed : boolean ,
Forget cancelled

inTrial : boolean ,
trialStartTime : Nat ,
billedForMonth : Nat ,
hasHadTrialOrSubscription : boolean ,
hasCancelled : boolean ,

1



cancelMonth : Nat
]

BillQueueItem
∆
= [

user : USERS ,
fee : Fees

]

TypeOk
∆
=

∧ EventsOk
∧ month ∈ Month
∧ database.users ∈ [USERS → UserRow ]
∧ database.billQueue ∈ Seq(BillQueueItem)

API endpoints

StartSubscription(u)
∆
=

Not subscribed

∧ ∧ database.users[u].subscribed = false
∧ ∨ database.users[u].inTrial = false

∨ database.users[u].trialStartTime = month

∧ database ′ =
[database except

! [“users”][u].subscribed = true,
! [“users”][u].hasHadTrialOrSubscription = true,
! [“users”][u].hasCancelled = false

]
Observability required by stub

∧ events ′ = Append(events, [type 7→ “startsubscription”, user 7→ u])
∧ unchanged month

CancelSubscription(u)
∆
=

Subscribed

∧ ∨ database.users[u].subscribed = true
∨ ∧ database.users[u].inTrial = true

∧ database.users[u].trialStartTime < month
∧ database ′ =

[database except
! [“users”][u].subscribed = false,
! [“users”][u].inTrial = false,
! [“users”][u].hasCancelled = true,
! [“users”][u].cancelMonth = month,
Charge cancellation fee

2



! [“billQueue”] =
Append(database.billQueue,

[user 7→ u, fee 7→ CancellationFee])
]

Observability required by stub

∧ events ′ = Append(events, [type 7→ “cancelsubscription”, user 7→ u])
∧ unchanged ⟨month⟩

StartTrial(u)
∆
=

∧ database.users[u].inTrial = false
∧ database.users[u].subscribed = false
∧ database.users[u].hasHadTrialOrSubscription = false
∧ database ′ = [database except

! [“users”][u].inTrial = true,
! [“users”][u].trialStartTime = month,
! [“users”][u].hasHadTrialOrSubscription = true

]

Observability required by stub

∧ events ′ = Append(events, [type 7→ “starttrial”, user 7→ u])
∧ unchanged ⟨month⟩

CancelTrial(u)
∆
=

In active trial

∧ database.users[u].inTrial = true
∧ database.users[u].trialStartTime = month
And not subscribed

∧ database.users[u].subscribed = false
∧ database ′ = [database except

! [“users”][u].inTrial = false
]

Observability required by stub

∧ events ′ = Append(events, [type 7→ “canceltrial”, user 7→ u])
∧ unchanged ⟨month⟩

WatchVideo(u)
∆
=

∧ ∨ database.users[u].subscribed = true
∨ database.users[u].inTrial = true
Remove video access at the end of cancelled month

∨ ∧ database.users[u].hasCancelled = true
∧ database.users[u].cancelMonth = month

Observability required by stub

3



∧ events ′ = Append(events, [type 7→ “watchvideo”, user 7→ u])
∧ unchanged ⟨month, database⟩

Stub method, do not changed

Bill(u, fee)
∆
=

∧ events ′ = Append(events, [type 7→ “bill”,
user 7→ u,
fee 7→ fee])

PaymentFailed(u, fee)
∆
=

∧ database ′ = [database except
! [“users”][u].subscribed = false,
! [“users”][u].hasCancelled = false

]

Observability required by stub

∧ events ′ = Append(events, [type 7→ “paymentfailed”,
user 7→ u,
fee 7→ fee])

∧ unchanged ⟨month⟩

Recurring Operations

This the the state that calls the Payment Failed API

ExistingBillFailed
∆
=

∨ ∃ i ∈ 1 . . Len(events) :
Only a past bill can fail

∧ events[i ] ∈ BillEvent
∧ PaymentFailed(events[i ].user , events[i ].fee)

BillSubscribedUsers
∆
=

∧ ∃ u ∈ USERS :
That is subscribed

∧ ∨ database.users[u].subscribed = true
Subscribed from a trial so bill

∨ ∧ database.users[u].inTrial = true
∧ database.users[u].trialStartTime < month

Ensure users are not double billed

∧ database.users[u].billedForMonth < month
∧ database ′ =

[database except
Add subscription fee

! [“billQueue”] =
Append(database.billQueue,

[user 7→ u, fee 7→ SubscriptionFee]),
! [“users”][u].billedForMonth = month

4



]
∧ unchanged ⟨events, month⟩

ProcessBills
∆
=

∧ Len(database.billQueue) > 0
∧ let bill

∆
= Head(database.billQueue)in

Bills user

∧ Bill(bill .user , bill .fee)
∧ database ′ =

[database except
Removes head of queue

! [“billQueue”] =
SubSeq(database.billQueue,
2, Len(database.billQueue))

]
∧ unchanged ⟨month⟩

Stub method that prevents the month from passing until all operations are complete. Represent

worker methods, etc

HandledMonth
∆
=

∧ ¬enabled BillSubscribedUsers
∧ ¬enabled ProcessBills

DO NOT MODIFY

MonthPasses
∆
=

∧HandledMonth
∧month ′ = month + 1
∧ events ′ = Append(events, [type 7→ “monthpass”])
∧ unchanged ⟨database⟩

Specification

Init
∆
=
∧ events = ⟨⟩ Events must be intialized empty, per stub

∧month = 0
∧ database = [

Users start with everything unset

users 7→
[u ∈ USERS 7→
[
subscribed 7→ false,
inTrial 7→ false,
trialStartTime 7→ 0,
billedForMonth 7→ 0,
hasHadTrialOrSubscription 7→ false,
hasCancelled 7→ false,
cancelMonth 7→ 0

5



]
],

Bill queue starts empty

billQueue 7→ ⟨⟩
]

Next
∆
=

\ * Required by stub

∨MonthPasses

\ * State modified below

∨ ∃ u ∈ USERS :

∨ StartSubscription(u)

∨ CancelSubscription(u)

∨ StartTrial(u)

∨ CancelTrial(u)

∨WatchVideo(u)

\ * Add more user based states

\ * Payment failing behavior is part of spec not implementation

∨ ExistingBillFailed

∨ BillSubscribedUsers

\ * Modification History

\ * Last modified Sun Jun 19 17:44:01 MST 2022 by elliotswart

\ * Created Sun Jun 19 16:56:29 MST 2022 by elliotswart

6


