
module naive
extends Naturals, Sequences

Our “Test Data”. Each of these is a set of ids, relevant only in that they are distinct from each

other.

constants
USERIDS , A set of userIds to test with (one per user)

SERVERS , A set of serverIds (each one will “create” a new server)

METADATAS , A set of metadata versions.

IMAGES A set of image versions.

Our variables update each step and represent the state of our modeled system.

variables
These variables are relevant to the implementation.

databaseState, databaseState[key] = What is stored for this key

blobStoreState, blobStoreState[key] = What is stored for this key

serverStates, serverStates[serverId ] = What the server is doing

This variable is used to observe the state of the system to check if it’s doing the right thing.

Think of it like the test harness.

Represents all the write requests and read responses sent to/from

the system.

operations

Represents every variable in this model.

vars
∆
= ⟨databaseState, blobStoreState, serverStates, operations⟩

You strongly type math with math. Here is where we say which types are allowed for all our
variables. TypeOk is set as an Invariant, which means we expect it always to be true. It will
fail if false, effectively giving us type checking. The declarations that follow are part of TypeOk ,
separated to make it clearer.

Allows all the values to also be UNSET , which is a distinct value not to be confused for the others.

UserIdVal
∆
= USERIDS ∪ {“UNSET”}

MetadataVal
∆
= METADATAS ∪ {“UNSET”}

ImageVal
∆
= IMAGES ∪ {“UNSET”}

Describes all possible states a server can be in.

ServerStateVal
∆
=

[
state : {

current:

“waiting”, next: StartWrite or StartRead

after: StartWrite

1



“started write”, next: WriteMetadata or FailWrite

after: WriteMetadata

“wrote metadata”, next: WriteBlobAndReturn or FailWrite

after: StartRead

“started read”, next: ReadMetadata

after: ReadMetadata

“read metadata” next: ReadBlobAndReturn

},
userId : UserIdVal ,
metadata : MetadataVal ,
image : ImageVal

]

Represents an action that occured on the API boundary. Used for observability.

OperationValue
∆
= [type : {“READ”, “WRITE”},

userId : UserIdVal ,
metadata : MetadataVal ,
image : ImageVal ]

The full type specification for all variables in the system

TypeOk
∆
=

The database state contains a mapping of userIds to metadatas. It can also be “UNSET”,
representing a case where there is no metadata. Note: we make this specific to our problem.
If this were a more general problem, it might look like:

databaseState ∈ [KEYS → RECORDS ].

∧ databaseState ∈ [USERIDS → MetadataVal ]

The blob store state contains a mapping of userIds to images. Note: we make this specific to

our problem. If this was a more general problem, it might look like:

blobStoreState ∈ [KEYS → BLOBS ].

∧ blobStoreState ∈ [USERIDS → ImageVal ]

The serverStates store the current states for each server, allowing us to build a state machine
describing our system. Implemented as a mapping between servers and all their possible
states.

∧ serverStates ∈ [SERVERS → ServerStateVal ]
∧ operations ∈ Seq(OperationValue)

When the model starts, everything begins unset. Unlike standard testing every possible state will

be explored, so we don’t need to initialize for specific scenarios.

Init
∆
=
∧ databaseState = [u ∈ USERIDS 7→ “UNSET”]
∧ blobStoreState = [u ∈ USERIDS 7→ “UNSET”]
∧ serverStates = [s ∈ SERVERS 7→ [state 7→ “waiting”,

userId 7→ “UNSET”,
metadata 7→ “UNSET”,

2



image 7→ “UNSET”
]]

∧ operations = ⟨⟩

State Machine: All of the states are functions of s (server), because the only actively modeled

actors in this system are our servers, but there can be multiple working simultainiously.

StartWrite(s)
∆
=

Writing only starts when a server is waiting

∧ serverStates[s].state = “waiting”
This will try every combination of userId , metadata and image (one at

a time). We store this throughout the state lifecycle. Next states will

refer to this

∧ ∃ u ∈ USERIDS , m ∈ METADATAS , i ∈ IMAGES :
serverStates′ means the next state of serverStates

∧ serverStates ′ = [serverStates except update only server s

! [s].state = “started write”, update state

set values for the upcoming write

! [s].userId = u,
! [s].metadata = m,
! [s].image = i ]

Record the write for observability

∧ operations ′ = Append(operations,
This is created with “record” symantics,

which is why 7→ not = is used

[
type 7→ “WRITE”,
userId 7→ u,
metadata 7→ m,
image 7→ i

])
We need to list every unchanged variable.

Not changing is a behavior too.

∧ unchanged ⟨databaseState, blobStoreState⟩

WriteMetadata(s)
∆
= Represents a successful database write

Established an alias to make code more compact

let currentState
∆
= serverStates[s]

in
Metadata writing happens directly after write is started

∧ currentState.state = “started write”
Database is transactional/consistent. We can therefore model this

happening in one step

∧ databaseState ′ = [databaseState except
! [currentState.userId ] = currentState.metadata]

3



∧ serverStates ′ = [serverStates except This is how the state advances

! [s].state = “wrote metadata”]
∧ unchanged ⟨blobStoreState, operations⟩

WriteBlobAndReturn(s)
∆
= Represents a successful blob store write

let currentState
∆
= serverStates[s]

in
Metadata writing happens directly after write is started

∧ currentState.state = “wrote metadata”
Blob store has read after write consistency. We can therefore

model it happening in one step

∧ blobStoreState ′ = [blobStoreState except
! [currentState.userId ] = currentState.image]

∧ serverStates ′ = [serverStates except update only server s

Process done once blob is written

! [s].state = “waiting”]
∧ unchanged ⟨databaseState, operations⟩

FailWrite(s)
∆
=

In our model, a server can only fail if it is writing. We don’t need to do this, but it cuts down
state space we don’t care about. We are worried about writes failing in a bad spot causing
errors in future reads and writes. We don’t model spontaneous read failures.

Will only get to this state if writing

∧ serverStates[s].state ∈ {“started write”, “wrote metadata”}
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”]

Nothing happens with the database and blob store. Everything this server did stays done,

anything left undone stays undone.

∧ unchanged ⟨databaseState, blobStoreState, operations⟩

We model reading in detail because reading and writing are occurring at the same time, and may

interact with each other in unexpected ways.

StartRead(s)
∆
=

Reading only starts when a server is waiting

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS : When we start reading we pick a user id

serverStates ′ = [serverStates except update only server s

! [s].state = “started read”,
! [s].userId = u]

Reading doesn’t changed stored state

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged operations

4



ReadMetadata(s)
∆
=

let currentState
∆
= serverStates[s]

in
Once the read has started, the first thing we do is Read Metadata

∧ currentState.state = “started read”
∧ serverStates ′ =

[serverStates except update only server s

! [s].state = “read metadata”,

Assembles the read request from whatever is in the database for that user.

! [s].metadata = databaseState[currentState.userId ]]

Reading doesn’t changed stored state

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged operations

ReadBlobAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]

in
Blob is read after metadata is read

∧ currentState.state = “read metadata”
∧ serverStates ′ = [serverStates except update only server s

! [s].state = “waiting”,

Assembles the read request from whatever is in the database for

that user.

! [s].image = blobStoreState[currentState.userId ]]

∧ operations ′ = Append(operations,

Read returns the state it built up during the read process.

[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ currentState.metadata,
image 7→ blobStoreState[currentState.userId ]

])
Reading doesn’t changed stored state

∧ unchanged ⟨databaseState, blobStoreState⟩

The Next section determines what states will be chosen on every step.

Next
∆
=

For every step, pick a server and have it advance one state

∃ s ∈ SERVERS :
∨ StartWrite(s)
∨WriteMetadata(s)
∨WriteBlobAndReturn(s)

5



∨ FailWrite(s)
∨ StartRead(s)
∨ ReadMetadata(s)
∨ ReadBlobAndReturn(s)

The Spec describes what the describe system DOES. First it starts in the Init state. Then for
every step use Next state: represented as 2Next . In temporal logic 2 means “for all states.”
However let’s imagine this is part of a larger system; sometimes this system will do nothing. That
is represented by [Next ] vars, meaning: Next∨unchanged vars. See learning material for a better
explaination of temporal logic operators. Note: The spec in this case describes what the system
DOES, not what it should do. Basically this is our system under test, and we describe Invariants
(below) and properties (discussed later) to alert us if the system does something wrong/unexpected

Spec
∆
= Init ∧2[Next ]vars

Invariants: These are things that should always be true about the system. If they become false
during any step, an error will occur with a trace that shows you the series of steps that let it to be
violated. This is very powerful. The first invariant we saw was TypeOk : the types are expected
to always conform to the expected type system, and if not we want to know why.

ConsistentReads
∆
=

If there are no operations, they are consistent

∨ operations = ⟨⟩
∨ ∀ i ∈ 1 . . Len(operations) : For every read operation

let readOp
∆
= operations[i ]in

∨ ∧ readOp.type = “READ”
There must exist a write operation

∧ ∨ ∃ j ∈ 1 . . i :
let writeOp

∆
= operations[j ]in

∧ writeOp.type = “WRITE”
With the same data

∧ readOp.userId = writeOp.userId
∧ readOp.metadata = writeOp.metadata
∧ readOp.image = writeOp.image

∨ Ignore unset reads

∧ readOp.metadata = “UNSET”
∧ readOp.image = “UNSET”

∨ readOp.type = “WRITE” Ignore writes

One of the best things about invariants is that if they were ever going to be tripped, you’ll hear
about it. Unlike testing, where sometimes a confluence of events leads to a test passing when it
shouldn’t, the model checker will try every possible state, so if it ever messes up, you’ll know.

This is used for model checker configuration so the simulation doesn’t go on forever.

StopAfter3Operations
∆
=

Len(operations) ≤ 3

6



7


