MODULE storagecleanerimproved
EXTENDS Naturals, Sequences, FiniteSets

[

CONSTANTS
USERIDS,
SERVERS,
METADATAS,
IMAGES,
UUIDS,
CLEANERS

VARIABLES
Implementation variables
databaseState,
blobStoreState,
serverStates,
cleanerStates,

We just added a time variable here

time, Natural number representing the number of hours that have passed

Observability variables

operations

vars = (databaseState, blobStoreState,
serverStates, operations, cleanerStates, time)

cleanerVars = (cleanerStates)
Strong Typing

UserldVal = USERIDS U {"UNSET"}
MetadataVal = METADATAS U {“UNSET"}
ImageVal = IMAGES U {"UNSET"}
UUIDVal = UUIDS U {“UNSET"}

DatabaseRecord = |
metadata : MetadataVal,
imageld : UUIDVal

A blob store record is modeled to store creation time
BlobStoreRecord = |
image : ImageVal,
created : Nat
] u{l
status — “"UNSET",

image — “UNSET”
]} It can still be unset

ServerState Val =
[
state : {
“waiting’",
“started_write”,
“wrote_blob",
“started_read”,
“read_metadata”
2
userld : UserldVal,
metadata : MetadataVal,
tmageld : UUIDVal,
image : ImageVal

]

CleanerState Val =
[

state : {
“waiting",
“got_blob_keys",
“got_unused_keys",
“deleting_keys"

2

blobKeys : SUBSET UUIDS,

unusedBlobKeys : SUBSET UUIDS

OperationValue = [type : { “READ”, “WRITE"},
userld : UserldVal,
metadata : MetadataVal,
image : Image Val]

TypeOk =
A databaseState € [USERIDS — DatabaseRecord)
Blob store is updated to store records. Can be a record or unset
A blobStoreState € [UUIDS — BlobStoreRecord]
A serverStates € [SERVERS — ServerState Val]
A cleanerStates € [CLEANERS — CleanerState Val)
A operations € Seq(Operation Value)
A time € Nat Time is represented as a natural number

Init =
A databaseState =
[u € USERIDS — [metadata — “UNSET", imageld — “UNSET"]|
A blobStoreState =
[u € UUIDS — [status — “UNSET", image — “UNSET"]]
A serverStates = [s € SERVERS — [state — "waiting”,
userld — “UNSET",
metadata — “UNSET",
imageld — "UNSET",
image — “"UNSET"
I

A cleanerStates = [¢ € CLEANERS — |
state — “waiting”,
blobKeys — {},
unusedBlobKeys — {}

I

A operations = ()
A time = 0 Time starts at 0

State Machine

TimePasses =
A time' = time + 1
A UNCHANGED (serverStates, databaseState, blobStoreState, operations,
cleanerStates)

Server Writes

A

ServerStartWrite(s) =
A serverStates[s].state = “waiting”
A3Ju € USERIDS, m € METADATAS, i € IMAGES :
A serverStates’ = [serverStates EXCEPT
I[s].state = “started_write",
l[s].userld = u,
![s].metadata = m,
![s].image = 1]
A operations’ = Append(operations,

[

type — “WRITE",
userld — u,
metadata — m,
mage — 4

)

A UNCHANGED (databaseState, blobStoreState, cleanerStates)
A UNCHANGED time

ServerWriteBlob(s) =
LET currentState = serverStatess]
IN
A currentState.state = “started_write”
A3id € UUIDS :
A blobStoreState[id] = [status — "UNSET", image — “"UNSET"]
A blobStoreState’ = [blobStoreState EXCEPT
id] = [
image — currentState.image,
created — time
I
A serverStates’ = [serverStates EXCEPT
I[s].state = “wrote_blob"
[[s].imageld = id)
A UNCHANGED (databaseState, operations)
A UNCHANGED cleanerVars
A UNCHANGED time

Server WriteMetadataAndReturn(s) =
LET currentState = serverStatess]
IN
A currentState.state = “wrote_blob”
A databaseState’ = [databaseState EXCEPT
currentState.userld) = |
metadata — currentState.metadata,
imageld — currentState.imageld)]

A serverStates’ = [serverStates EXCEPT
I[s].state = “waiting",
![s].userld = “"UNSET",
l[s].metadata = "UNSET",
I[s].4mage = "UNSET",
![s].imageld = "UNSET"]

A UNCHANGED (blobStoreState, operations)

A UNCHANGED cleanerVars

A UNCHANGED time

ServerFail Write(s) =

A serverStates[s].state € { “started_write”, “wrote_blob" }

A serverStates’ = [serverStates EXCEPT
I[s].state = “waiting”,
I[s].userld = "UNSET",
[[s].metadata = "UNSET",
[[s].image = “UNSET",
l[s].4mageld = "UNSET"]

A UNCHANGED (databaseState, blobStoreState, operations)

A\ UNCHANGED cleanerVars
A UNCHANGED time

Server Reads

ServerStartRead(s) =

A serverStates[s].state = “waiting”
A 3Ju € USERIDS :
serverStates’ = [serverStates EXCEPT

I[s].state = “started_read”,
1[s]-userld = u]

A UNCHANGED (databaseState, blobStoreState)
A UNCHANGED operations

A UNCHANGED cleanerVars

A UNCHANGED time

2

ServerReadMetadata(s)

LET currentState = serverStatess]

IN

A currentState.state = “started_read”

A databaseState[currentState.userld].metadata # "UNSET"

A serverStates’ =

[serverStates EXCEPT

I[s].state = “read_metadata”,
[[s].metadata = databaseState[currentState.userld].metadata,
l[s].imageld = databaseState[currentState.userld].imageld)]

A UNCHANGED (databaseState, blobStoreState)

A UNCHANGED operations

A UNCHANGED cleanerVars

A UNCHANGED time

ServerReadMetadataAndReturnEmpty(s) =

LET currentState = serverStates|s]

IN

A currentState.state = “started_read”

A databaseState[currentState.userld].metadata = "UNSET"

A serverStates’ = [serverStates EXCEPT
I[s].state = “waiting”,
I[s].userld = "UNSET",
[[s].metadata = "UNSET",
[[s].image = “UNSET",
l[s].4mageld = "UNSET"]

A operations’ = Append(operations,

Returns an empty record

type — “READ",
userld — currentState.userld,
metadata — “UNSET" |
image — “"UNSET"
1)
A UNCHANGED (databaseState, blobStoreState)
A UNCHANGED cleanerVars
A UNCHANGED time

ServerReadBlobAndReturn(s) =
LET currentState = serverStates[s]
IN
A currentState.state = “read_metadata”
A operations’ = Append(operations,
[
type — “READ",
userld — currentState.userld,
metadata — currentState.metadata,
Looks up image by imageld
image — blobStoreState[currentState.imageld].image

)

A serverStates’ = [serverStates EXCEPT
I[s]-state = "waiting”,

I[s]-userld = "UNSET",

[s].metadata = “UNSET",

[s].image = “UNSET",

[s].imageld = "UNSET"]

A UNCHANGED (databaseState, blobStoreState)

A UNCHANGED cleanerVars

A UNCHANGED time

!
!
!

Cleaner States

This is the main change in the logic.

CleanerStartGetBlobKeys(c) =
LET current = cleanerStates[c]IN
A current.state = “waiting”
A cleanerStates’ = |
cleanerStates EXCEPT
![c].state = “got_blob_keys",
All keys in blockstore
![c].blobKeys = {
k € UUIDS :
LET earliestDeletionTime = blobStoreState[k].created + 2IN

That are not unset

A blobStoreState[k] # |
status — “"UNSET",
image — “UNSET"]
It must have been created 2 or more hours ago
A earliestDeletionTime < time
}
]
A UNCHANGED (serverStates, databaseState, blobStoreState, operations)
A\ UNCHANGED time

CleanerGetUnusedKeys(c) =
LET current = cleanerStates[c]IN
A current.state = “got_blob_keys"
A cleanerStates’ = |
cleanerStates EXCEPT
![c].state = “got_unused_keys",
![c].unusedBlobKeys =
{k € current.blobKeys :
Vu € USERIDS :
databaseState[u].imageld # k}
]
A UNCHANGED (serverStates, databaseState, blobStoreState, operations)
A UNCHANGED time

CleanerDeletingKeys(c) =
LET current = cleanerStates[c]IN
A current.state € {“got_unused_keys”, “deleting_keys" }
A Cardinality(current.unusedBlobKeys) # 0
A3k € current.unusedBlobKeys :
A blobStoreState’ =
[blobStoreState EXCEPT
I[k] = [status — "UNSET", image — “UNSET"]]
A cleanerStates’ = |
cleanerStates EXCEPT
![c].unusedBlobKeys = current.unusedBlobKeys \ {k}
}

A UNCHANGED (serverStates, databaseState, operations)
A UNCHANGED time

CleanerFinished(c) =
LET current = cleanerStates[c]IN
A current.state = “deleting_keys"
A Cardinality (current.unusedBlobKeys) = 0
A cleanerStates’ = |
cleanerStates EXCEPT

![c].state = “waiting”,
![c].blobKeys = {},
![c].unusedBlobKeys = {}

]

A UNCHANGED (serverStates, databaseState, blobStoreState, operations)
A UNCHANGED time

CleanerFail(c) =

LET current = cleanerStates[c]IN

A current.state € {“got_blob_keys", “got_unused_keys", “deleting_keys"}

A cleanerStates’ = |

cleanerStates EXCEPT

![c].state = “waiting”
![c].blobKeys = {},
![c].unusedBlobKeys = {}

]

A UNCHANGED (serverStates, databaseState, blobStoreState, operations)
A UNCHANGED time

Specification / Next
Next =
Time can pass now
V TimePasses
VvV ds € SERVERS :
V ServerStart Write(s)
V Server WriteBlob(s)
V Server WriteMetadataAndReturn(s)
V ServerFail Write(s)
V ServerStartRead (s)
V ServerReadMetadata(s)
V ServerReadMetadataAndReturnEmpty(s)
V ServerReadBlobAndReturn(s)
Vdc¢ € CLEANERS :
V CleanerStartGetBlobKeys(c)
V CleanerGetUnusedKeys(c)
V CleanerDeletingKeys(c)
V CleanerFinished(c)
V CleanerFail(c)

Spec = Init A O[Next]yars

Invariants

Note that the success criteria hasn’t changed this whole time

ConsistentReads =
V operations = ()
VVi € l..Len(operations) :
LET readOp = operations[i]IN
V A readOp.type = "READ”
A v3jel..i:
LET writeOp = operations[j]IN
A writeOp.type = "WRITE"
A readOp.userld = writeOp.userld
A readOp.metadata = writeOp.metadata
A readOp.image = writeOp.image

A readOp.metadata = "UNSET"
A readOp.image = "UNSET"
V readOp.type = "WRITE"

NoOrphanFiles =
-3k € UUIDS :

A blobStoreState[k] # [status — “UNSET", image — “UNSET"]
AV wu € USERIDS :

databaseState[u].imageld # k

Properties

EventuallyNoOrphanFiles = <NoOrphanFiles
AlwaysEventuallyNoOrphanFiles = 0O FEventuallyNoOrphanFiles

StopAfter3Operations =
A Len(operations) < 3
A time < 2

StopAftersOperations =
Len(operations) < 5

