
module storagecleanerimproved
extends Naturals, Sequences, FiniteSets

constants
USERIDS ,
SERVERS ,
METADATAS ,
IMAGES ,
UUIDS ,
CLEANERS

variables
Implementation variables

databaseState,
blobStoreState,
serverStates,
cleanerStates,

We just added a time variable here

time, Natural number representing the number of hours that have passed

Observability variables

operations

vars
∆
= ⟨databaseState, blobStoreState,

serverStates, operations, cleanerStates, time⟩

cleanerVars
∆
= ⟨cleanerStates⟩

Strong Typing

UserIdVal
∆
= USERIDS ∪ {“UNSET”}

MetadataVal
∆
= METADATAS ∪ {“UNSET”}

ImageVal
∆
= IMAGES ∪ {“UNSET”}

UUIDVal
∆
= UUIDS ∪ {“UNSET”}

DatabaseRecord
∆
= [

metadata : MetadataVal ,
imageId : UUIDVal

]

A blob store record is modeled to store creation time

BlobStoreRecord
∆
= [

image : ImageVal ,
created : Nat

] ∪ {[
status 7→ “UNSET”,

1



image 7→ “UNSET”
]} It can still be unset

ServerStateVal
∆
=

[
state : {

“waiting”,
“started write”,
“wrote blob”,
“started read”,
“read metadata”

},
userId : UserIdVal ,
metadata : MetadataVal ,
imageId : UUIDVal ,
image : ImageVal

]

CleanerStateVal
∆
=

[
state : {

“waiting”,
“got blob keys”,
“got unused keys”,
“deleting keys”

},
blobKeys : subset UUIDS ,
unusedBlobKeys : subset UUIDS

]

OperationValue
∆
= [type : {“READ”, “WRITE”},

userId : UserIdVal ,
metadata : MetadataVal ,
image : ImageVal ]

TypeOk
∆
=

∧ databaseState ∈ [USERIDS → DatabaseRecord ]
Blob store is updated to store records. Can be a record or unset

∧ blobStoreState ∈ [UUIDS → BlobStoreRecord ]
∧ serverStates ∈ [SERVERS → ServerStateVal ]
∧ cleanerStates ∈ [CLEANERS → CleanerStateVal ]
∧ operations ∈ Seq(OperationValue)
∧ time ∈ Nat Time is represented as a natural number

2



Init
∆
=
∧ databaseState =

[u ∈ USERIDS 7→ [metadata 7→ “UNSET”, imageId 7→ “UNSET”]]
∧ blobStoreState =

[u ∈ UUIDS 7→ [status 7→ “UNSET”, image 7→ “UNSET”]]
∧ serverStates = [s ∈ SERVERS 7→ [state 7→ “waiting”,

userId 7→ “UNSET”,
metadata 7→ “UNSET”,
imageId 7→ “UNSET”,
image 7→ “UNSET”
]]

∧ cleanerStates = [c ∈ CLEANERS 7→ [
state 7→ “waiting”,
blobKeys 7→ {},
unusedBlobKeys 7→ {}

]]
∧ operations = ⟨⟩
∧ time = 0 Time starts at 0

State Machine

TimePasses
∆
=

∧ time ′ = time + 1
∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations,

cleanerStates⟩

Server Writes

ServerStartWrite(s)
∆
=

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS , m ∈ METADATAS , i ∈ IMAGES :

∧ serverStates ′ = [serverStates except
! [s].state = “started write”,
! [s].userId = u,
! [s].metadata = m,
! [s].image = i ]

∧ operations ′ = Append(operations,
[

type 7→ “WRITE”,
userId 7→ u,
metadata 7→ m,
image 7→ i

])

∧ unchanged ⟨databaseState, blobStoreState, cleanerStates⟩
∧ unchanged time

3



ServerWriteBlob(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started write”
∧ ∃ id ∈ UUIDS :

∧ blobStoreState[id ] = [status 7→ “UNSET”, image 7→ “UNSET”]
∧ blobStoreState ′ = [blobStoreState except

! [id ] = [
image 7→ currentState.image,
created 7→ time
]]

∧ serverStates ′ = [serverStates except
! [s].state = “wrote blob”,
! [s].imageId = id ]

∧ unchanged ⟨databaseState, operations⟩
∧ unchanged cleanerVars
∧ unchanged time

ServerWriteMetadataAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “wrote blob”
∧ databaseState ′ = [databaseState except

! [currentState.userId ] = [
metadata 7→ currentState.metadata,
imageId 7→ currentState.imageId ]]

∧ serverStates ′ = [serverStates except
! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨blobStoreState, operations⟩
∧ unchanged cleanerVars
∧ unchanged time

ServerFailWrite(s)
∆
=

∧ serverStates[s].state ∈ {“started write”, “wrote blob”}
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState, operations⟩

4



∧ unchanged cleanerVars
∧ unchanged time

Server Reads

ServerStartRead(s)
∆
=

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS :

serverStates ′ = [serverStates except
! [s].state = “started read”,
! [s].userId = u]

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged operations
∧ unchanged cleanerVars
∧ unchanged time

ServerReadMetadata(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started read”
∧ databaseState[currentState.userId ].metadata ̸= “UNSET”
∧ serverStates ′ =

[serverStates except
! [s].state = “read metadata”,
! [s].metadata = databaseState[currentState.userId ].metadata,
! [s].imageId = databaseState[currentState.userId ].imageId ]

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged operations
∧ unchanged cleanerVars
∧ unchanged time

ServerReadMetadataAndReturnEmpty(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started read”
∧ databaseState[currentState.userId ].metadata = “UNSET”
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ operations ′ = Append(operations,

Returns an empty record

5



[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ “UNSET”,
image 7→ “UNSET”

])
∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged cleanerVars
∧ unchanged time

ServerReadBlobAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “read metadata”
∧ operations ′ = Append(operations,

[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ currentState.metadata,
Looks up image by imageId

image 7→ blobStoreState[currentState.imageId ].image
])

∧ serverStates ′ = [serverStates except
! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged cleanerVars
∧ unchanged time

Cleaner States

This is the main change in the logic.

CleanerStartGetBlobKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state = “waiting”
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “got blob keys”,
All keys in blockstore

! [c].blobKeys = {
k ∈ UUIDS :

let earliestDeletionTime
∆
= blobStoreState[k ].created + 2in

6



That are not unset

∧ blobStoreState[k ] ̸= [
status 7→ “UNSET”,
image 7→ “UNSET”]

It must have been created 2 or more hours ago

∧ earliestDeletionTime ≤ time
}

]
∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩
∧ unchanged time

CleanerGetUnusedKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state = “got blob keys”
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “got unused keys”,
! [c].unusedBlobKeys =

{k ∈ current .blobKeys :
∀ u ∈ USERIDS :

databaseState[u].imageId ̸= k}
]

∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩
∧ unchanged time

CleanerDeletingKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state ∈ {“got unused keys”, “deleting keys”}
∧ Cardinality(current .unusedBlobKeys) ̸= 0
∧ ∃ k ∈ current .unusedBlobKeys :

∧ blobStoreState ′ =
[blobStoreState except

! [k ] = [status 7→ “UNSET”, image 7→ “UNSET”]]
∧ cleanerStates ′ = [

cleanerStates except
! [c].unusedBlobKeys = current .unusedBlobKeys \ {k}

]
∧ unchanged ⟨serverStates, databaseState, operations⟩
∧ unchanged time

CleanerFinished(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state = “deleting keys”
∧ Cardinality(current .unusedBlobKeys) = 0
∧ cleanerStates ′ = [

cleanerStates except

7



! [c].state = “waiting”,
! [c].blobKeys = {},
! [c].unusedBlobKeys = {}

]
∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩
∧ unchanged time

CleanerFail(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state ∈ {“got blob keys”, “got unused keys”, “deleting keys”}
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “waiting”,
! [c].blobKeys = {},
! [c].unusedBlobKeys = {}

]
∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩
∧ unchanged time

Specification / Next

Next
∆
=

Time can pass now

∨ TimePasses
∨ ∃ s ∈ SERVERS :

∨ ServerStartWrite(s)
∨ ServerWriteBlob(s)
∨ ServerWriteMetadataAndReturn(s)
∨ ServerFailWrite(s)
∨ ServerStartRead(s)
∨ ServerReadMetadata(s)
∨ ServerReadMetadataAndReturnEmpty(s)
∨ ServerReadBlobAndReturn(s)

∨ ∃ c ∈ CLEANERS :
∨ CleanerStartGetBlobKeys(c)
∨ CleanerGetUnusedKeys(c)
∨ CleanerDeletingKeys(c)
∨ CleanerFinished(c)
∨ CleanerFail(c)

Spec
∆
= Init ∧2[Next ]vars

Invariants

8



Note that the success criteria hasn’t changed this whole time

ConsistentReads
∆
=

∨ operations = ⟨⟩
∨ ∀ i ∈ 1 . . Len(operations) :

let readOp
∆
= operations[i ]in

∨ ∧ readOp.type = “READ”
∧ ∨ ∃ j ∈ 1 . . i :

let writeOp
∆
= operations[j ]in

∧ writeOp.type = “WRITE”
∧ readOp.userId = writeOp.userId
∧ readOp.metadata = writeOp.metadata
∧ readOp.image = writeOp.image

∨
∧ readOp.metadata = “UNSET”
∧ readOp.image = “UNSET”

∨ readOp.type = “WRITE”

NoOrphanFiles
∆
=

¬∃ k ∈ UUIDS :
∧ blobStoreState[k ] ̸= [status 7→ “UNSET”, image 7→ “UNSET”]
∧ ∀ u ∈ USERIDS :

databaseState[u].imageId ̸= k

Properties

EventuallyNoOrphanFiles
∆
= 3NoOrphanFiles

AlwaysEventuallyNoOrphanFiles
∆
= 2EventuallyNoOrphanFiles

StopAfter3Operations
∆
=

∧ Len(operations) ≤ 3
∧ time ≤ 2

StopAfter5Operations
∆
=

Len(operations) ≤ 5

9


