
module storagecleanernaive
extends Naturals, Sequences, FiniteSets

constants
USERIDS ,
SERVERS ,
METADATAS ,
IMAGES ,
UUIDS ,
Added to

CLEANERS

variables
databaseState,
blobStoreState,
serverStates,
cleanerStates, CleanerStates[storageCleanerId ]

operations

vars
∆
= ⟨databaseState, blobStoreState,

serverStates, operations, cleanerStates⟩

cleanerVars
∆
= ⟨cleanerStates⟩

Strong Typing

UserIdVal
∆
= USERIDS ∪ {“UNSET”}

MetadataVal
∆
= METADATAS ∪ {“UNSET”}

ImageVal
∆
= IMAGES ∪ {“UNSET”}

UUIDVal
∆
= UUIDS ∪ {“UNSET”} added UUID type

DatabaseRecord
∆
= [

metadata : MetadataVal ,
imageId : UUIDVal

]

Describes all possible states a server can be in. Unchanged since last example)

ServerStateVal
∆
=

[
state : {

current:

“waiting”, next: ServerStartWrite or ServerStartRead

after: ServerStartWrite

“started write”, next: ServerWriteBlob or ServerFailWrite

after: ServerWriteBlob

1



“wrote blob”, next: ServerWriteMetadataAndReturn or ServerFailWrite

after: ServerStartRead

“started read”, next: ServerReadMetadata

after: ServerReadMetadata, ServerReadMetadataAndReturnEmpty

“read metadata” next: ServerReadBlobAndReturn

},
userId : UserIdVal ,
metadata : MetadataVal ,
imageId : UUIDVal , Need to track imageId to perform a lookup

image : ImageVal
]

Describes all possible states a server can be in. Unchanged since last example)

CleanerStateVal
∆
=

[
state : {

current:

“waiting”, next: CleanerStartGetBlobKeys

after: waiting

“got blob keys”, next: CleanerGetUnusedKeys or CleanerFail

after: got blob keys

“got unused keys”, next: CleanerDeleteKeys or CleanerFail

after: got unused keys

next: CleanerDeleteKeys, CleanerFinished , or waiting

“deleting keys”
},
blobKeys : subset UUIDS ,
unusedBlobKeys : subset UUIDS

]

This is an observability value, and we are still measuring the same thing

No changes are needed

OperationValue
∆
= [type : {“READ”, “WRITE”},

userId : UserIdVal ,
metadata : MetadataVal ,
image : ImageVal ]

TypeOk
∆
=

∧ databaseState ∈ [USERIDS → DatabaseRecord ]
∧ blobStoreState ∈ [UUIDS → ImageVal ]
∧ serverStates ∈ [SERVERS → ServerStateVal ]
Added cleaner states to track status of cleaners

∧ cleanerStates ∈ [CLEANERS → CleanerStateVal ]
∧ operations ∈ Seq(OperationValue)

2



Init
∆
=
∧ databaseState =

[u ∈ USERIDS 7→ [metadata 7→ “UNSET”, imageId 7→ “UNSET”]]
∧ blobStoreState = [u ∈ UUIDS 7→ “UNSET”]
∧ serverStates = [s ∈ SERVERS 7→ [state 7→ “waiting”,

userId 7→ “UNSET”,
metadata 7→ “UNSET”,
imageId 7→ “UNSET”,
image 7→ “UNSET”
]]

∧ cleanerStates = [c ∈ CLEANERS 7→ [
state 7→ “waiting”,
blobKeys 7→ {},
unusedBlobKeys 7→ {}

]]
∧ operations = ⟨⟩

State Machine: All of the states are functions of s (server), because the only actively modelled

actors in this system are our servers, but there can be multiple working simultainiously.

Server Writes

ServerStartWrite(s)
∆
=

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS , m ∈ METADATAS , i ∈ IMAGES :

∧ serverStates ′ = [serverStates except
! [s].state = “started write”,
! [s].userId = u,
! [s].metadata = m,
! [s].image = i ]

∧ operations ′ = Append(operations,
[

type 7→ “WRITE”,
userId 7→ u,
metadata 7→ m,
image 7→ i

])
Cleaner state needs to be added as unchanged for all server operations

∧ unchanged ⟨databaseState, blobStoreState, cleanerStates⟩

ServerWriteBlob(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started write”
∧ ∃ id ∈ UUIDS :

3



∧ blobStoreState[id ] = “UNSET”
∧ blobStoreState ′ = [blobStoreState except

! [id ] = currentState.image]
∧ serverStates ′ = [serverStates except

! [s].state = “wrote blob”,
! [s].imageId = id ]

∧ unchanged ⟨databaseState, operations⟩
∧ unchanged cleanerVars

ServerWriteMetadataAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “wrote blob”
∧ databaseState ′ = [databaseState except

! [currentState.userId ] = [
metadata 7→ currentState.metadata,
imageId 7→ currentState.imageId ]]

∧ serverStates ′ = [serverStates except
! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨blobStoreState, operations⟩
∧ unchanged cleanerVars

ServerFailWrite(s)
∆
=

∧ serverStates[s].state ∈ {“started write”, “wrote blob”}
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState, operations⟩
∧ unchanged cleanerVars

Server Reads

ServerStartRead(s)
∆
=

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS :

serverStates ′ = [serverStates except
! [s].state = “started read”,

4



! [s].userId = u]

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged operations
∧ unchanged cleanerVars

If database record is present

ServerReadMetadata(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started read”
Represents reading the metadata while the database record is set

∧ databaseState[currentState.userId ].metadata ̸= “UNSET”
∧ serverStates ′ =

[serverStates except
! [s].state = “read metadata”,
! [s].metadata = databaseState[currentState.userId ].metadata,
Reads imageId from database

! [s].imageId = databaseState[currentState.userId ].imageId ]
∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged operations
∧ unchanged cleanerVars

If database record is not present

ServerReadMetadataAndReturnEmpty(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started read”
Represents reading the metadata while the database record is unset

∧ databaseState[currentState.userId ].metadata = “UNSET”
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ operations ′ = Append(operations,

Returns an empty record

[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ “UNSET”,
image 7→ “UNSET”

])
∧ unchanged ⟨databaseState, blobStoreState⟩

5



∧ unchanged cleanerVars

ServerReadBlobAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “read metadata”
∧ operations ′ = Append(operations,

[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ currentState.metadata,
image 7→ blobStoreState[currentState.imageId ]

])
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged cleanerVars

Cleaner States

CleanerStartGetBlobKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

Starts only from waiting

∧ current .state = “waiting”
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “got blob keys”,
All keys that are set in blockstore

! [c].blobKeys = {k ∈ UUIDS : blobStoreState[k ] ̸= “UNSET”}
]

∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩

CleanerGetUnusedKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

From blob keys, get unused keys from database

∧ current .state = “got blob keys”
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “got unused keys”,
! [c].unusedBlobKeys =

{k ∈ current .blobKeys : Keys in blob keys

∀ u ∈ USERIDS : That are not in the database

6



databaseState[u].imageId ̸= k}
]

∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩

CleanerDeletingKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

When we have unused keys, keep deleting

∧ current .state ∈ {“got unused keys”, “deleting keys”}
∧ Cardinality(current .unusedBlobKeys) ̸= 0
∧ ∃ k ∈ current .unusedBlobKeys : pick a key to delete

∧ blobStoreState ′ = [blobStoreState except ! [k ] = “UNSET”]
∧ cleanerStates ′ = [

cleanerStates except
remove the key from set

! [c].unusedBlobKeys = current .unusedBlobKeys \ {k}
]

∧ unchanged ⟨serverStates, databaseState, operations⟩

CleanerFinished(c)
∆
=

let current
∆
= cleanerStates[c]in

When we have no more unused keys to delete, finish

∧ current .state = “deleting keys”
∧ Cardinality(current .unusedBlobKeys) = 0
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “waiting”,
! [c].blobKeys = {},
! [c].unusedBlobKeys = {}

]
∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩

CleanerFail(c)
∆
=

let current
∆
= cleanerStates[c]in

Cleaner can fail from any active state

∧ current .state ∈ {“got blob keys”, “got unused keys”, “deleting keys”}
Failure represented by cleaner losing state. Any partial operations stay partially finished.

∧ cleanerStates ′ = [
cleanerStates except

! [c].state = “waiting”,
! [c].blobKeys = {},
! [c].unusedBlobKeys = {}

]
∧ unchanged ⟨serverStates, databaseState, blobStoreState, operations⟩

Specification / Next

7



Next
∆
=

For every step, we either trigger a server or cleaner to take a step

∨ ∃ s ∈ SERVERS :
∨ ServerStartWrite(s)
∨ ServerWriteBlob(s)
∨ ServerWriteMetadataAndReturn(s)
∨ ServerFailWrite(s)
∨ ServerStartRead(s)
∨ ServerReadMetadata(s)
∨ ServerReadMetadataAndReturnEmpty(s)
∨ ServerReadBlobAndReturn(s)

∨ ∃ c ∈ CLEANERS : all the steps a cleaner can take

∨ CleanerStartGetBlobKeys(c)
∨ CleanerGetUnusedKeys(c)
∨ CleanerDeletingKeys(c)
∨ CleanerFinished(c)
∨ CleanerFail(c)

Spec
∆
= Init ∧2[Next ]vars

Invariants

Note that the success criteria hasn’t changed this whole time

ConsistentReads
∆
=

If there are no operations, they are consistent

∨ operations = ⟨⟩
∨ ∀ i ∈ 1 . . Len(operations) : For every read operation

let readOp
∆
= operations[i ]in

∨ ∧ readOp.type = “READ”
There must exists a write operation

∧ ∨ ∃ j ∈ 1 . . i :
let writeOp

∆
= operations[j ]in

∧ writeOp.type = “WRITE”
With the same data

∧ readOp.userId = writeOp.userId
∧ readOp.metadata = writeOp.metadata
∧ readOp.image = writeOp.image

∨ Ignore unset reads

∧ readOp.metadata = “UNSET”
∧ readOp.image = “UNSET”

∨ readOp.type = “WRITE” Ignore writes

NoOrphanFiles
∆
=

8



There does not exist a key

¬∃ k ∈ UUIDS :
That is in the block store

∧ blobStoreState[k ] ̸= “UNSET”
And not in database

∧ ∀ u ∈ USERIDS :
databaseState[u].imageId ̸= k

At some point in the future there will be no orphan files

If it’s true ever, it is True

EventuallyNoOrphanFiles
∆
= 3NoOrphanFiles

Always, at some point in the future, there will be no orphan files

This is how we test eventual consistency. It can’t just happen once

It must always happen

AlwaysEventuallyNoOrphanFiles
∆
= 2EventuallyNoOrphanFiles

StopAfter3Operations
∆
=

Len(operations) ≤ 3

StopAfter5Operations
∆
=

Len(operations) ≤ 5

9


