
module storagecleaner
extends Naturals, Sequences, FiniteSets

constants
USERIDS ,
SERVERS ,
METADATAS ,
IMAGES ,
UUIDS ,
CLEANERS

variables
Implementation variables

databaseState,
blobStoreState,
serverStates,
cleanerStates,

We just added a time variable here

time, Natural number representing the number of hours that have passed

Observability variables

operations,
usedIds,

Temporal property variable: used to change state space on failure

failed

helperVars
∆
= ⟨time, operations, usedIds, failed⟩

vars
∆
= ⟨databaseState, blobStoreState,

serverStates, operations, cleanerStates, time, usedIds, failed⟩

cleanerVars
∆
= ⟨cleanerStates⟩

Strong Typing

UserIdVal
∆
= USERIDS ∪ {“UNSET”}

MetadataVal
∆
= METADATAS ∪ {“UNSET”}

ImageVal
∆
= IMAGES ∪ {“UNSET”}

UUIDVal
∆
= UUIDS ∪ {“UNSET”}

DatabaseRecord
∆
= [

metadata : MetadataVal ,
imageId : UUIDVal

]

1



BlobStoreRecord
∆
= [

image : ImageVal ,
created : Nat

] ∪ {[
status 7→ “UNSET”,
image 7→ “UNSET”

]}

ServerStateVal
∆
=

[
state : {

“waiting”,
“started write”,
“wrote blob”,
“started read”,
“read metadata”

},
userId : UserIdVal ,
metadata : MetadataVal ,
imageId : UUIDVal ,
image : ImageVal ,
start : Nat added to track when a request starts

]

CleanerStateVal
∆
=

[
state : {

“waiting”,
“got blob keys”,
“got unused keys”,
“deleting keys”

},
This will be used to introduce a delay

unusedKeyTime : Nat ,
blobKeys : subset UUIDS ,
unusedBlobKeys : subset UUIDS

]

OperationValue
∆
= [type : {“READ”, “WRITE”},

userId : UserIdVal ,
metadata : MetadataVal ,
image : ImageVal ]

TypeOk
∆
=

∧ databaseState ∈ [USERIDS → DatabaseRecord ]

2



∧ blobStoreState ∈ [UUIDS → BlobStoreRecord ]
∧ serverStates ∈ [SERVERS → ServerStateVal ]
∧ cleanerStates ∈ [CLEANERS → CleanerStateVal ]
∧ operations ∈ Seq(OperationValue)
∧ time ∈ Nat
∧ usedIds ∈ subset UUIDS
∧ failed ∈ Nat

Init
∆
=
∧ databaseState =

[u ∈ USERIDS 7→ [metadata 7→ “UNSET”, imageId 7→ “UNSET”]]
∧ blobStoreState =

[u ∈ UUIDS 7→ [status 7→ “UNSET”, image 7→ “UNSET”]]
∧ serverStates = [s ∈ SERVERS 7→ [state 7→ “waiting”,

userId 7→ “UNSET”,
metadata 7→ “UNSET”,
imageId 7→ “UNSET”,
image 7→ “UNSET”,
will be set on start states

start 7→ 0
]]

∧ cleanerStates = [c ∈ CLEANERS 7→ [
state 7→ “waiting”,
blobKeys 7→ {},
unusedBlobKeys 7→ {},
unusedKeyTime 7→ 0

]]
∧ operations = ⟨⟩
∧ time = 0 Time starts at 0

∧ usedIds = {}
∧ failed = 0

State Machine:

TimePasses
∆
=

∧ time ′ = time + 1
∧ unchanged ⟨serverStates, databaseState,

blobStoreState, cleanerStates⟩
∧ unchanged ⟨operations, usedIds, failed⟩

Server Restart

ServerRestart(s)
∆
=

let currentState
∆
= serverStates[s]in

let terminationTime
∆
= (currentState.start + 1)in

3



∧ currentState.state ̸= “waiting” Server must be active

This is the only state a server can reach if past termination time

∧ time ⇒ terminationTime
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState, cleanerVars⟩
∧ unchanged helperVars

Server Writes

ServerStartWrite(s)
∆
=

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS , m ∈ METADATAS , i ∈ IMAGES :

∧ serverStates ′ = [serverStates except
! [s].state = “started write”,
! [s].userId = u,
! [s].metadata = m,
! [s].image = i ,
The time a write request starts

! [s].start = time
]

∧ operations ′ = Append(operations,
[

type 7→ “WRITE”,
userId 7→ u,
metadata 7→ m,
image 7→ i

])
∧ unchanged ⟨databaseState, blobStoreState, cleanerStates⟩
∧ unchanged ⟨time, usedIds, failed⟩

ServerWriteBlob(s)
∆
=

let currentState
∆
= serverStates[s]in

let terminationTime
∆
= (currentState.start + 1)in

∧ time < terminationTime Can only start this state if server is live

∧ currentState.state = “started write”
∧ ∃ id ∈ UUIDS :

∧ id /∈ usedIds
∧ blobStoreState[id ] = [status 7→ “UNSET”, image 7→ “UNSET”]
∧ blobStoreState ′ = [blobStoreState except

! [id ] = [

4



image 7→ currentState.image,
created 7→ time
]]

∧ serverStates ′ = [serverStates except
! [s].state = “wrote blob”,
! [s].imageId = id ]

∧ usedIds ′ = usedIds ∪ {id}
∧ unchanged ⟨databaseState, cleanerVars⟩
∧ unchanged ⟨time, operations, failed⟩

ServerWriteMetadataAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]in

let terminationTime
∆
= (currentState.start + 1)in

∧ time < terminationTime
∧ currentState.state = “wrote blob”
∧ databaseState ′ = [databaseState except

! [currentState.userId ] = [
metadata 7→ currentState.metadata,
imageId 7→ currentState.imageId ]]

∧ serverStates ′ = [serverStates except
! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨blobStoreState, cleanerVars⟩
∧ unchanged helperVars

ServerFailWrite(s)
∆
=

let currentState
∆
= serverStates[s]in

let terminationTime
∆
= (currentState.start + 1)in

∧ time < terminationTime Can only start this state if server is live

∧ serverStates[s].state ∈ {“started write”, “wrote blob”}
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState, cleanerVars⟩
∧ unchanged helperVars

Server Reads

5



ServerStartRead(s)
∆
=

let currentState
∆
= serverStates[s]in

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS :

serverStates ′ = [serverStates except
! [s].state = “started read”,
! [s].userId = u,
The time a read request starts

! [s].start = time
]

∧ unchanged ⟨databaseState, blobStoreState, cleanerVars⟩
∧ unchanged helperVars

ServerReadMetadata(s)
∆
=

let currentState
∆
= serverStates[s]in

let terminationTime
∆
= (currentState.start + 1)in

∧ time < terminationTime Can only start this state if server is live

∧ currentState.state = “started read”
∧ databaseState[currentState.userId ].metadata ̸= “UNSET”
∧ serverStates ′ =

[serverStates except
! [s].state = “read metadata”,
! [s].metadata = databaseState[currentState.userId ].metadata,
! [s].imageId = databaseState[currentState.userId ].imageId ]

∧ unchanged ⟨databaseState, blobStoreState, cleanerVars⟩
∧ unchanged helperVars

ServerReadMetadataAndReturnEmpty(s)
∆
=

let currentState
∆
= serverStates[s]in

let terminationTime
∆
= (currentState.start + 1)in

∧ time < terminationTime Can only start this state if server is live

∧ currentState.state = “started read”
∧ databaseState[currentState.userId ].metadata = “UNSET”
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ operations ′ = Append(operations,
[

type 7→ “READ”,
userId 7→ currentState.userId ,

6



metadata 7→ “UNSET”,
image 7→ “UNSET”

])
∧ unchanged ⟨databaseState, blobStoreState, cleanerVars⟩
∧ unchanged ⟨usedIds, time, failed⟩

ServerReadBlobAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]in

let terminationTime
∆
= (currentState.start + 1)in

∧ time < terminationTime Can only start this state if server is live

∧ currentState.state = “read metadata”
∧ operations ′ = Append(operations,

[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ currentState.metadata,
image 7→ blobStoreState[currentState.imageId ].image

])
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState, cleanerVars⟩
∧ unchanged ⟨usedIds, time, failed⟩

Cleaner States

This is the main change in the logic.

CleanerStartGetBlobKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state = “waiting”
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “got blob keys”,
All keys in blockstore

! [c].blobKeys = {
k ∈ UUIDS :

let earliestDeletionTime
∆
= blobStoreState[k ].created + 2in

That are not unset

∧ blobStoreState[k ] ̸= [
status 7→ “UNSET”,
image 7→ “UNSET”]

It must be created 2 or more hours ago

7



∧ earliestDeletionTime ≤ time
}

]
∧ unchanged ⟨serverStates, databaseState,

blobStoreState⟩
∧ unchanged helperVars

CleanerGetUnusedKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state = “got blob keys”
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “got unused keys”,
! [c].unusedBlobKeys =

{k ∈ current .blobKeys :
∀ u ∈ USERIDS :

databaseState[u].imageId ̸= k},
Mark the time the unused keys were retrieved

! [c].unusedKeyTime = time
]

∧ unchanged ⟨serverStates, databaseState,
blobStoreState⟩

∧ unchanged helperVars

CleanerDeletingKeys(c)
∆
=

let current
∆
= cleanerStates[c]in

Keys get deleted a minimum 1 hour after they are valid. Giving reads

a the time to die.

let earliestDeleteTime
∆
= current .unusedKeyTime + 1in

∧ time ≥ earliestDeleteTime
∧ current .state ∈ {“got unused keys”, “deleting keys”}
∧ Cardinality(current .unusedBlobKeys) ̸= 0
∧ ∃ k ∈ current .unusedBlobKeys : pick a key to delete

∧ blobStoreState ′ =
[blobStoreState except

! [k ] = [status 7→ “UNSET”, image 7→ “UNSET”]]
∧ cleanerStates ′ = [

cleanerStates except
! [c].unusedBlobKeys = current .unusedBlobKeys \ {k}

]
∧ unchanged ⟨serverStates, databaseState⟩
∧ unchanged helperVars

CleanerFinished(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state = “deleting keys”

8



∧ Cardinality(current .unusedBlobKeys) = 0
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “waiting”,
! [c].blobKeys = {},
! [c].unusedBlobKeys = {}

]
∧ unchanged ⟨serverStates, databaseState,

blobStoreState⟩
∧ unchanged helperVars

CleanerFail(c)
∆
=

let current
∆
= cleanerStates[c]in

∧ current .state ∈ {“got blob keys”, “got unused keys”, “deleting keys”}
∧ cleanerStates ′ = [

cleanerStates except
! [c].state = “waiting”,
! [c].blobKeys = {},
! [c].unusedBlobKeys = {}

]
change state space on failed

∧ failed ′ = failed + 1
∧ unchanged ⟨serverStates, databaseState,

blobStoreState⟩
∧ unchanged ⟨time, operations, usedIds⟩

Specification / Next

CleanerSteps
∆
=

∃ c ∈ CLEANERS :
∨ CleanerStartGetBlobKeys(c)
∨ CleanerGetUnusedKeys(c)
∨ CleanerDeletingKeys(c)
∨ CleanerFinished(c)
∨ CleanerFail(c)

Next
∆
=

Time can pass now

∨ TimePasses
∨ ∃ s ∈ SERVERS :

∨ ServerStartWrite(s)
∨ ServerWriteBlob(s)
∨ ServerWriteMetadataAndReturn(s)
∨ ServerFailWrite(s)
∨ ServerStartRead(s)
∨ ServerReadMetadata(s)

9



∨ ServerReadMetadataAndReturnEmpty(s)
∨ ServerReadBlobAndReturn(s)

∨ CleanerSteps

Spec
∆
= ∧ Init

∧2[Next ]vars
∧WFvars(CleanerSteps) The cleaner will always get to run

Invariants

Note that the success criteria hasn’t changed this whole time

ConsistentReads
∆
=

If there are no operations, they are consistent

∨ operations = ⟨⟩
∨ ∀ i ∈ 1 . . Len(operations) : For every read operation

let readOp
∆
= operations[i ]in

∨ ∧ readOp.type = “READ”
There must exists a write operation

∧ ∨ ∃ j ∈ 1 . . i :
let writeOp

∆
= operations[j ]in

∧ writeOp.type = “WRITE”
With the same data

∧ readOp.userId = writeOp.userId
∧ readOp.metadata = writeOp.metadata
∧ readOp.image = writeOp.image

∨ Ignore unset reads

∧ readOp.metadata = “UNSET”
∧ readOp.image = “UNSET”

∨ readOp.type = “WRITE” Ignore writes

NoOrphanFiles
∆
=

There does not exist a key

¬∃ k ∈ UUIDS :
That is in the block store

∧ blobStoreState[k ] ̸= [status 7→ “UNSET”, image 7→ “UNSET”]
And not in database

∧ ∀ u ∈ USERIDS :
databaseState[u].imageId ̸= k

This is used for model checker configuration so that simulation doesn’t go on forever

EventuallyNoOrphanFiles
∆
= 23NoOrphanFiles

StopAfter3Operations
∆
=

10



∧ Len(operations) ≤ 3
∧ time ≤ 3

StopAfter5Operations
∆
=

Len(operations) ≤ 5

11


