MODULE storagecleaner

[
EXTENDS Naturals, Sequences, FiniteSets

CONSTANTS
USERIDS,
SERVERS,
METADATAS,
IMAGES,
UUIDS,
CLEANERS

VARIABLES
Implementation variables

databaseState,
blobStoreState,
serverStates,
cleanerStates,

We just added a time variable here

time, Natural number representing the number of hours that have passed

Observability variables

operations,
usedlds,

Temporal property variable: used to change state space on failure

failed
helperVars = (time, operations, usedIds, failed)

vars = (databaseState, blobStoreState,
serverStates, operations, cleanerStates, time, usedlds, failed)

cleanerVars = (cleanerStates)
Strong Typing

UserldVal = USERIDS U {"UNSET"}
MetadataVal = METADATAS U {“UNSET"}
ImageVal = IMAGES U {“UNSET"}
UUIDVal = UUIDS U {“UNSET"}

DatabaseRecord = |
metadata : MetadataVal,
tmageld : UUIDVal

BlobStoreRecord = |
image : ImageVal,
created : Nat

I udl

status — “"UNSET",
image — “UNSET"

I}

ServerStateVal =
[
state : {

“waiting’",
“started_write”
“wrote_blob",
“started_read”,
“read_metadata”

)

H
userld : UserldVal,

metadata : MetadataVal,

tmageld : UUIDVal,

mmage : ImageVal,

start : Nat added to track when a request starts

]

CleanerStateVal =
[

state : {
“waiting",
“got_blob_keys",
“got_unused_keys",
“deleting_keys"

|3

This will be used to introduce a delay

unusedKeyTime : Nat,

blobKeys : SUBSET UUIDS,

unusedBlobKeys : SUBSET UUIDS

OperationValue = [type : { “READ", “WRITE"},
userld : UserldVal,
metadata : MetadataVal,
image : Image Val]

TypeOk =
A databaseState € [USERIDS — DatabaseRecord)

blobStoreState € [UUIDS — BlobStoreRecord)
serverStates € [SERVERS — ServerState Val]
cleanerStates € [CLEANERS — CleanerState Val]
operations € Seq(Operation Value)

time € Nat

usedlds € SUBSET UUIDS

failed € Nat

>>> > > > >

Init =
A databaseState =
[u € USERIDS + [metadata — “"UNSET", imageld — “"UNSET"]]
A blobStoreState =
[u € UUIDS — [status — “UNSET", image — “UNSET"]]
A serverStates = [s € SERVERS — [state — "waiting”,
userld — “UNSET",
metadata — “UNSET",
imageld — "UNSET",
image — “"UNSET",
will be set on start states
start — 0
1l
A cleanerStates = [¢ € CLEANERS +— |
state — “waiting",
blobKeys — {},
unusedBlobKeys — {},
unusedKeyTime — 0

A operations = ()

A time = 0 Time starts at 0
A usedlds = {}

A failed =0

State Machine:

TimePasses =
A time’ = time + 1
A UNCHANGED (serverStates, databaseState,
blobStoreState, cleanerStates)
A UNCHANGED (operations, usedlds, failed)

Server Restart

ServerRestart(s) =
LET currentState = serverStates[s]IN
LET terminationTime = (currentState.start + 1)IN

A currentState.state # "waiting” Server must be active
This is the only state a server can reach if past termination time

A time = terminationTime
A serverStates’ = [serverStates EXCEPT
![s].state = “waiting",
[[s].userld = "UNSET",
l[s].metadata = "UNSET",
I[s].image = "UNSET",
1[s].imageld = “"UNSET"]

A UNCHANGED (databaseState, blobStoreState, cleanerVars)

A UNCHANGED helperVars

Server Writes
ServerStart Write(s) =
A serverStates[s].state = “waiting”
A3Ju € USERIDS, m € METADATAS, i € IMAGES :
A serverStates’ = [serverStates EXCEPT
I[s].state = “started_write",
U[s].userld = u,
l[s].metadata = m,

l[s].4mage = i,
The time a write request starts

l[s].start = time

]

A operations’ = Append(operations,
type — “WRITE",

userld — wu,
metadata — m,

image — 1

)

A UNCHANGED (databaseState, blobStoreState, cleanerStates)

[

A UNCHANGED (time, usedlds, failed)

ServerWriteBlob(s) =
LET currentState = serverStates|s|IN
LET terminationTime = (currentState.start + 1)IN

A time < terminationTime Can only start this state if server is live

A currentState.state = “started_write”

A3id € UUIDS :
Aid ¢ usedlds
A blobStoreStatelid] = [status — "UNSET", image — “UNSET"]

A blobStoreState’ = [blobStoreState EXCEPT
id] = |

image — currentState.image,
created — time
I
A serverStates’ = [serverStates EXCEPT
![s].state = “wrote_blob"
![s].imageld = id)
A usedlds’ = usedIds U {id}
A UNCHANGED (databaseState, cleanerVars)
A UNCHANGED (time, operations, failed)

ServerWriteMetadataAndReturn(s) =
LET currentState = serverStates[s]IN
LET terminationTime = (currentState.start + 1)IN
A time < terminationTime
A currentState.state = “wrote_blob"
A databaseState’ = [databaseState EXCEPT
!currentState.userld] = |

metadata — currentState.metadata,

imageld — currentState.imageld))

A serverStates’ = [serverStates EXCEPT
l[s].state = “waiting",
![s].userld = “UNSET",
I[s].metadata = “UNSET",
I[s].image = “UNSET",
[[s].imageld = "UNSET"]

A UNCHANGED (blobStoreState, cleanerVars)

A UNCHANGED helperVars

ServerFailWrite(s) =
LET currentState = serverStates[s]IN
LET terminationTime = (currentState.start + 1)IN

A time < terminationTime Can only start this state if server is live

A serverStates[s|.state € { “started_write”, "wrote_blob" }

A serverStates’ = [serverStates EXCEPT
[[s].state = “waiting”,
I[s]-userld = "UNSET",
I[s].-metadata = “UNSET",
[[s].image = "UNSET",
[[s].imageld = "UNSET"]

A UNCHANGED (databaseState, blobStoreState, cleanerVars)

A UNCHANGED helperVars

Server Reads

ServerStartRead(s) =

LET currentState = serverStates[s]IN

A serverStates[s].state = “waiting”

A3Ju € USERIDS :

serverStates’ = [serverStates EXCEPT
I[s].state = “started_read”,
![s].userld = u,
The time a read request starts

![s]-start = time

}

A UNCHANGED (databaseState, blobStoreState, cleanerVars)
A UNCHANGED helperVars

ServerReadMetadata(s) =

LET currentState = serverStates[s|IN

LET terminationTime = (currentState.start + 1)IN

A time < terminationTime Can only start this state if server is live

A currentState.state = “started_read”

A databaseState[currentState.userld].metadata # "UNSET"

A serverStates’ =

[serverStates EXCEPT

I[s].state = “read_metadata”,
l[s].metadata = databaseState[currentState.userld].metadata,
![s].imageld = databaseState|currentState.userld].imageld]

A UNCHANGED (databaseState, blobStoreState, cleanerVars)

A UNCHANGED helperVars

ServerReadMetadataAndReturnEmpty(s) =
LET currentState = serverStates[s|IN
LET terminationTime = (currentState.start + 1)IN
A time < terminationTime Can only start this state if server is live
A currentState.state = “started_read”
A databaseState[currentState.userld].metadata = "UNSET"
A serverStates’ = [serverStates EXCEPT
I[s].state = “waiting",
![s].userld = “UNSET",
I[s].metadata = “UNSET",
I[s].image = “UNSET",
[[s].imageld = "UNSET"]
A operations’ = Append(operations,
[
type — “"READ",
userld — currentState.userld,

metadata — “UNSET",
image — “"UNSET"
I
A UNCHANGED (databaseState, blobStoreState, cleanerVars)
A UNCHANGED (usedlds, time, failed)

ServerReadBlobAndReturn(s) =
LET currentState = serverStates[s|IN
LET terminationTime = (currentState.start + 1)IN
A time < terminationTime Can only start this state if server is live
A currentState.state = “read_metadata”
A operations’ = Append(operations,
[
type — “"READ",
userld — currentState.userld,
metadata — currentState.metadata,
image — blobStoreState[currentState.imageld)].image
1)
A serverStates’ = [serverStates EXCEPT
I[s]-state = "waiting”,
I[s]-userld = "UNSET",
s].metadata = "UNSET",
s].image = “UNSET",
s].imageld = "UNSET"]
A UNCHANGED (databaseState, blobStoreState, cleanerVars)
A UNCHANGED (usedIds, time, failed)

!
!
!

Cleaner States

This is the main change in the logic.

CleanerStartGetBlobKeys(c) =
LET current = cleanerStates[c]IN
A current.state = “waiting”
A cleanerStates’ = |
cleanerStates EXCEPT
![c].state = “got_blob_keys",
All keys in blockstore
![c].blobKeys = {
k € UUIDS :
LET earliestDeletionTime = blobStoreState[k].created + 2IN
That are not unset
A blobStoreState[k] # |
status — “"UNSET",
image — “UNSET"]

It must be created 2 or more hours ago

A earliestDeletionTime < time
}
]
A UNCHANGED (serverStates, databaseState,

blobStoreState)
A UNCHANGED helperVars

CleanerGetUnusedKeys(c) =
LET current = cleanerStates[c]IN
A current.state = “got_blob_keys"
A cleanerStates’ = |
cleanerStates EXCEPT
![c].state = “got_unused_keys",
![c].unusedBlobKeys =
{k € current.blobKeys :
Vu € USERIDS :
databaseState[u].imageld # k},
Mark the time the unused keys were retrieved
![c].unusedKeyTime = time
]
A UNCHANGED (serverStates, databaseState,
blobStoreState)
A UNCHANGED helperVars

CleanerDeletingKeys(c) =
LET current = cleanerStates[c]IN
Keys get deleted a minimum 1 hour after they are valid. Giving reads
a the time to die.
LET earliestDeleteTime = current.unusedKeyTime + 1IN
A time > earliestDelete Time
A current.state € {"got_unused_keys", “deleting_keys" }
A Cardinality(current.unusedBlobKeys) # 0
A3k € current.unusedBlobKeys : pick a key to delete
A blobStoreState’ =
[blobStoreState EXCEPT
k] = [status — "UNSET", image — “UNSET"]]
A cleanerStates’ = |
cleanerStates EXCEPT
![c].unusedBlobKeys = current.unusedBlobKeys \ {k}
]

A UNCHANGED (serverStates, databaseState)
A UNCHANGED helperVars

CleanerFinished(c) =
LET current = cleanerStates[c]IN
A current.state = “deleting_keys"

A Cardinality(current.unusedBlobKeys) = 0
A cleanerStates’ = |
cleanerStates EXCEPT
![c].state = “waiting”
![c].blobKeys = {},
![c].unusedBlobKeys = {}
]
A UNCHANGED (serverStates, databaseState,
blobStoreState)
A UNCHANGED helperVars

CleanerFail(c) =
LET current = cleanerStates[c]IN
A current.state € {“got_blob_keys", “got_unused_keys", “deleting_keys"}
A cleanerStates’ = |
cleanerStates EXCEPT
![c].state = “waiting”
![c].blobKeys = {},
![c].unusedBlobKeys = {}
]

change state space on failed

A failed” = failed + 1

A UNCHANGED (serverStates, databaseState,
blobStoreState)

A UNCHANGED (time, operations, usedIds)

Specification / Next

CleanerSteps =
Jc € CLEANERS :
V CleanerStartGetBlobKeys(c)
V CleanerGetUnusedKeys(c)
V CleanerDeletingKeys(c)
V CleanerFinished(c)
V CleanerFail(c)

Next =

Time can pass now

V TimePasses

V 3s € SERVERS :
V ServerStart Write(s)
V Server WriteBlob(s)
V Server WriteMetadataAndReturn(s)
V ServerFail Write(s)
V ServerStartRead(s)
V ServerReadMetadata(s)

V ServerReadMetadataAndReturnEmpty(s)
V ServerReadBlobAndReturn(s)
V CleanerSteps

Spec = A Init
A O[Next]yars
A WEF s (C’leaneTSteps) The cleaner will always get to run

Invariants

Note that the success criteria hasn’t changed this whole time

ConsistentReads =

If there are no operations, they are consistent
V operations = ()
VVi € 1.. Len(operations) : For every read operation
LET readOp = operations|i]IN
V A readOp.type = "READ”
There must exists a write operation
A v3jel..i:
LET writeOp = operations[j]IN
A writeOp.type = "WRITE"
With the same data
A readOp.userld = writeOp.userld
A readOp.metadata = writeOp.metadata
A readOp.image = writeOp.image
V Ignore unset reads
A readOp.metadata = "UNSET"
A readOp.image = "UNSET"
V readOp.type = "WRITE" Ignore writes

NoOrphanFiles =
There does not exist a key
-3k € UUIDS :
That is in the block store
A blobStoreState[k] # [status — “"UNSET", image — “"UNSET"]
And not in database
AV u € USERIDS :
databaseState[u].imageld # k

This is used for model checker configuration so that simulation doesn’t go on forever

EventuallyNoOrphanFiles = OO NoOrphanFiles

StopAfter3Operations =

10

A Len(operations) < 3
A time < 3

1>

StopAfterdOperations
Len(operations) < 5

11

