MODULE working

EXTENDS Naturals, Sequences

CONSTANTS
USERIDS,
SERVERS,
METADATAS,
IMAGES,
This constant is added to allow us to assign UUIDs as blob store keys
UUIDS

VARIABLES
databaseState,
blobStoreState,
serverStates,

operations

vars = (databaseState, blobStoreState, serverStates, operations)
Strong Typing

UserldVal = USERIDS U {"UNSET"}
MetadataVal = METADATAS U {“UNSET"}
ImageVal = IMAGES U {"UNSET"}

UUIDVal = UUIDS U {“UNSET"} added UUID type

Describes a database record. We need this now that it has to keep track of which image UUID it
is associated with.

DatabaseRecord = |
metadata : MetadataVal,
imageld : UUIDVal

]

Describes all possible states a server can be in. Unchanged since last example.
ServerStateVal =
[
state : {
current:
“waiting”, next: StartWrite or StartRead
after: StartWrite
“started_write", next: WriteBlob or FailWrite
after: WriteBlob
“wrote_blob", mnext: WriteMetadataAndReturn or Fail Write
after: StartRead



“started_read”, mext: ReadMetadata
after: ReadMetadata, ReadMetadataAndReturnEmpty
“read_metadata” next: ReadBlobAndReturn
H
userld : UserldVal,
metadata : MetadataVal,
tmageld : UUIDVal, Need to track imageld to perform a lookup
image : ImageVal

]

This is an observability value, and we are still measuring the same thing
No changes are needed
OperationValue = [type : { “READ”, “WRITE"},
userld : UserldVal,
metadata : MetadataVal,
image : Image Val]

TypeOk =
Database state modified to hold database records
A databaseState € [USERIDS — DatabaseRecord|
Blob store uses UUIDs as keys rather than userlds
A blobStoreState € [UUIDS — ImageVal]
A serverStates € [SERVERS — ServerState Val]
A operations € Seq(OperationValue)

Init =
Database record needs to be initialized differently
A databaseState =
[u € USERIDS +— [metadata — “"UNSET", imageld — “"UNSET"]]

Blob store is initialized with UUIDS

A blobStoreState = [u € UUIDS +— “UNSET"]

A serverStates = [s € SERVERS — [state — “waiting”,
userld — “UNSET",
metadata — “UNSET" |
imageld — "UNSET",
image — “"UNSET"

Il

A operations = ()

State Machine: All of the states are functions of s (server), because the only actively modeled
actors in this system are our servers, but there can be multiple working simultaneously.

Writes

2

StartWrite(s)



A serverStates[s].state = “waiting”
A3Ju € USERIDS, m € METADATAS, i € IMAGES :
A serverStates’ = [serverStates EXCEPT
![s].state = “started_write”,
Set values for the upcoming write
U[s].userld = u,
l[s].metadata = m,
I[s].image = 1]
Record the write for observability
A operations’ = Append(operations,
[
type — “WRITE",
userld — u,
metadata — m,
image — 1
1)

A UNCHANGED (databaseState, blobStoreState)

WriteBlob(s) =
LET currentState = serverStates|s]
IN
A currentState.state = “started_write”
A3id € UUIDS :

Guarantees a unique Id to simulate UUID. Note: If we run out of unset UUIDs, our
system will just stop writing. We need to look out for this and ensure the set of UUIDs
is large enough.

A blobStoreState[id] = “UNSET"

A blobStoreState’ = [blobStoreState EXCEPT
![id] = currentState.image]

Track Id to write to database

A serverStates’ = [serverStates EXCEPT
![s].state = “wrote_blob"
![s].imageld = id]

A UNCHANGED (databaseState, operations)

Writing the database is now the last part of a write operation
WriteMetadataAndReturn(s) =
LET currentState = serverStatess]
IN
A currentState.state = “wrote_blob”
A databaseState’ = [databaseState EXCEPT
![currentState.userld] = |
metadata — currentState.metadata,
Store imageld in database for read
imageld — currentState.imageld)]



A serverStates’ = [serverStates EXCEPT
I[s].state = “waiting",
![s].userld = “UNSET",
[[s].metadata = "UNSET",
I[s].image = "UNSET",
l[s].imageld = “"UNSET"]
A UNCHANGED (blobStoreState, operations)

FailWrite(s) =

A serverStates[s].state € { “started_write”, “wrote_blob" }

A serverStates’ = [serverStates EXCEPT
![s].state = “waiting",
[[s].userld = "UNSET",
l[s].metadata = “UNSET",
[[s].4mage = "UNSET",
I[s]-imageld = "UNSET"]

A UNCHANGED (databaseState, blobStoreState, operations)

Reads

StartRead(s) =

Reading only starts when a server is waiting
A serverStates[s].state = “waiting”
A3Ju € USERIDS :
serverStates’ = [serverStates EXCEPT
I[s].state = “started_read”,
![s].userld = u]

A UNCHANGED (databaseState, blobStoreState)
A\ UNCHANGED operations

If database record is present
ReadMetadata(s) =

LET currentState = serverStatess]

IN

A currentState.state = “started_read”

Represents reading the metadata while the database record is set
A databaseState[currentState.userld].metadata # "UNSET”
A serverStates’ =
[serverStates EXCEPT
I[s].state = “read_metadata”,
l[s].metadata = databaseState[currentState.userld].metadata,
Reads imageld from database

![s].imageld = databaseState|currentState.userld].imageld]

A UNCHANGED (databaseState, blobStoreState)



A UNCHANGED operations

If database record is not present
ReadMetadataAndReturnEmpty(s) =

LET currentState = serverStates[s]

IN

A currentState.state = “started_read”

Represents reading the metadata while the database record is unset

A databaseState[currentState.userld].metadata = "UNSET”

A serverStates’ = [serverStates EXCEPT
I[s].state = “waiting”,
[[s].userld = “"UNSET",
l[s].metadata = "UNSET",
I[s].4mage = "UNSET",
[[s].4mageld = "UNSET"]

A operations’ = Append(operations,

Returns an empty record

[

type — “READ",

userld — currentState.userld,
metadata — “UNSET",

image — “"UNSET"

)

A UNCHANGED (databaseState, blobStoreState)

ReadBlobAndReturn(s) =
LET currentState =
IN
A currentState.state = “read_metadata”

A operations’ = Append(operations,
[
type — “READ",
userld — currentState.userld,
metadata — currentState.metadata,
Looks up image by imageld
image — blobStoreState[currentState.imageld]

)

A serverStates’ = [serverStates EXCEPT
1[s].state = “waiting”,
I[s].userld = "UNSET",

[s].metadata = “UNSET",

[

[

serverStates|s]

s].image = “UNSET",
s].imageld = "UNSET"]
A UNCHANGED (databaseState, blobStoreState)

!
!
!



Specification / Next
Next =

For every step, pick a server and have it advance one state
ds € SERVERS :
V StartWrite(s)
V WriteBlob(s) New step
V WriteMetadataAndReturn(s) New step
V Fail Write(s)
V StartRead(s)
V ReadMetadata(s) New step
V ReadMetadataAndReturnEmpty(s) New step
V ReadBlobAndReturn(s)

Spec = Init A O[Next]yars

Invariants

Note that the success criteria hasn’t changed this whole time

ConsistentReads =
If there are no operations, they are consistent
V operations = ()
VVi € l..Len(operations) : For every read operation
LET readOp = operations[i]IN
V A readOp.type = "READ”
There must exist a write operation
A v3djel..i:
LET writeOp = operations[j]IN
A writeOp.type = "WRITE"
With the same data
A readOp.userld = writeOp.userld
A readOp.metadata = writeOp.metadata
A readOp.image = writeOp.image
V Ignore unset reads
A readOp.metadata = “UNSET”
A readOp.image = "UNSET"
V readOp.type = “WRITE" Ignore writes

This is used for model checker configuration so the simulation doesn’t go on forever.

StopAfter3Operations =
Len(operations) < 3

StopAfterd Operations
Len(operations) <5






