
module working
extends Naturals, Sequences

constants
USERIDS ,
SERVERS ,
METADATAS ,
IMAGES ,
This constant is added to allow us to assign UUIDs as blob store keys

UUIDS

variables
databaseState,
blobStoreState,
serverStates,

operations

vars
∆
= ⟨databaseState, blobStoreState, serverStates, operations⟩

Strong Typing

UserIdVal
∆
= USERIDS ∪ {“UNSET”}

MetadataVal
∆
= METADATAS ∪ {“UNSET”}

ImageVal
∆
= IMAGES ∪ {“UNSET”}

UUIDVal
∆
= UUIDS ∪ {“UNSET”} added UUID type

Describes a database record. We need this now that it has to keep track of which image UUID it

is associated with.

DatabaseRecord
∆
= [

metadata : MetadataVal ,
imageId : UUIDVal

]

Describes all possible states a server can be in. Unchanged since last example.

ServerStateVal
∆
=

[
state : {

current:

“waiting”, next: StartWrite or StartRead

after: StartWrite

“started write”, next: WriteBlob or FailWrite

after: WriteBlob

“wrote blob”, next: WriteMetadataAndReturn or FailWrite

after: StartRead

1



“started read”, next: ReadMetadata

after: ReadMetadata, ReadMetadataAndReturnEmpty

“read metadata” next: ReadBlobAndReturn

},
userId : UserIdVal ,
metadata : MetadataVal ,
imageId : UUIDVal , Need to track imageId to perform a lookup

image : ImageVal
]

This is an observability value, and we are still measuring the same thing

No changes are needed

OperationValue
∆
= [type : {“READ”, “WRITE”},

userId : UserIdVal ,
metadata : MetadataVal ,
image : ImageVal ]

TypeOk
∆
=

Database state modified to hold database records

∧ databaseState ∈ [USERIDS → DatabaseRecord ]
Blob store uses UUIDs as keys rather than userIds

∧ blobStoreState ∈ [UUIDS → ImageVal ]
∧ serverStates ∈ [SERVERS → ServerStateVal ]
∧ operations ∈ Seq(OperationValue)

Init
∆
=
Database record needs to be initialized differently

∧ databaseState =
[u ∈ USERIDS 7→ [metadata 7→ “UNSET”, imageId 7→ “UNSET”]]

Blob store is initialized with UUIDS

∧ blobStoreState = [u ∈ UUIDS 7→ “UNSET”]
∧ serverStates = [s ∈ SERVERS 7→ [state 7→ “waiting”,

userId 7→ “UNSET”,
metadata 7→ “UNSET”,
imageId 7→ “UNSET”,
image 7→ “UNSET”
]]

∧ operations = ⟨⟩

State Machine: All of the states are functions of s (server), because the only actively modeled

actors in this system are our servers, but there can be multiple working simultaneously.

Writes

StartWrite(s)
∆
=

2



∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS , m ∈ METADATAS , i ∈ IMAGES :

∧ serverStates ′ = [serverStates except
! [s].state = “started write”,
Set values for the upcoming write

! [s].userId = u,
! [s].metadata = m,
! [s].image = i ]

Record the write for observability

∧ operations ′ = Append(operations,
[

type 7→ “WRITE”,
userId 7→ u,
metadata 7→ m,
image 7→ i

])
∧ unchanged ⟨databaseState, blobStoreState⟩

WriteBlob(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started write”
∧ ∃ id ∈ UUIDS :

Guarantees a unique Id to simulate UUID . Note: If we run out of unset UUIDs, our
system will just stop writing. We need to look out for this and ensure the set of UUIDs
is large enough.

∧ blobStoreState[id ] = “UNSET”
∧ blobStoreState ′ = [blobStoreState except

! [id ] = currentState.image]
Track Id to write to database

∧ serverStates ′ = [serverStates except
! [s].state = “wrote blob”,
! [s].imageId = id ]

∧ unchanged ⟨databaseState, operations⟩

Writing the database is now the last part of a write operation

WriteMetadataAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “wrote blob”
∧ databaseState ′ = [databaseState except

! [currentState.userId ] = [
metadata 7→ currentState.metadata,
Store imageId in database for read

imageId 7→ currentState.imageId ]]

3



∧ serverStates ′ = [serverStates except
! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨blobStoreState, operations⟩

FailWrite(s)
∆
=

∧ serverStates[s].state ∈ {“started write”, “wrote blob”}
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState, operations⟩

Reads

StartRead(s)
∆
=

Reading only starts when a server is waiting

∧ serverStates[s].state = “waiting”
∧ ∃ u ∈ USERIDS :

serverStates ′ = [serverStates except
! [s].state = “started read”,
! [s].userId = u]

∧ unchanged ⟨databaseState, blobStoreState⟩
∧ unchanged operations

If database record is present

ReadMetadata(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started read”
Represents reading the metadata while the database record is set

∧ databaseState[currentState.userId ].metadata ̸= “UNSET”
∧ serverStates ′ =

[serverStates except
! [s].state = “read metadata”,
! [s].metadata = databaseState[currentState.userId ].metadata,
Reads imageId from database

! [s].imageId = databaseState[currentState.userId ].imageId ]
∧ unchanged ⟨databaseState, blobStoreState⟩

4



∧ unchanged operations

If database record is not present

ReadMetadataAndReturnEmpty(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “started read”
Represents reading the metadata while the database record is unset

∧ databaseState[currentState.userId ].metadata = “UNSET”
∧ serverStates ′ = [serverStates except

! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ operations ′ = Append(operations,

Returns an empty record

[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ “UNSET”,
image 7→ “UNSET”

])
∧ unchanged ⟨databaseState, blobStoreState⟩

ReadBlobAndReturn(s)
∆
=

let currentState
∆
= serverStates[s]

in
∧ currentState.state = “read metadata”
∧ operations ′ = Append(operations,

[
type 7→ “READ”,
userId 7→ currentState.userId ,
metadata 7→ currentState.metadata,
Looks up image by imageId

image 7→ blobStoreState[currentState.imageId ]
])

∧ serverStates ′ = [serverStates except
! [s].state = “waiting”,
! [s].userId = “UNSET”,
! [s].metadata = “UNSET”,
! [s].image = “UNSET”,
! [s].imageId = “UNSET”]

∧ unchanged ⟨databaseState, blobStoreState⟩

5



Specification / Next

Next
∆
=

For every step, pick a server and have it advance one state

∃ s ∈ SERVERS :
∨ StartWrite(s)
∨WriteBlob(s) New step

∨WriteMetadataAndReturn(s) New step

∨ FailWrite(s)
∨ StartRead(s)
∨ ReadMetadata(s) New step

∨ ReadMetadataAndReturnEmpty(s) New step

∨ ReadBlobAndReturn(s)

Spec
∆
= Init ∧2[Next ]vars

Invariants

Note that the success criteria hasn’t changed this whole time

ConsistentReads
∆
=

If there are no operations, they are consistent

∨ operations = ⟨⟩
∨ ∀ i ∈ 1 . . Len(operations) : For every read operation

let readOp
∆
= operations[i ]in

∨ ∧ readOp.type = “READ”
There must exist a write operation

∧ ∨ ∃ j ∈ 1 . . i :
let writeOp

∆
= operations[j ]in

∧ writeOp.type = “WRITE”
With the same data

∧ readOp.userId = writeOp.userId
∧ readOp.metadata = writeOp.metadata
∧ readOp.image = writeOp.image

∨ Ignore unset reads

∧ readOp.metadata = “UNSET”
∧ readOp.image = “UNSET”

∨ readOp.type = “WRITE” Ignore writes

This is used for model checker configuration so the simulation doesn’t go on forever.

StopAfter3Operations
∆
=

Len(operations) ≤ 3

StopAfter5Operations
∆
=

Len(operations) ≤ 5

6



7


